Modeling without categorical variables: a mixed-integer nonlinear program for the optimization of thermal insulation systems

Optimal design applications are often modeled by using categorical variables to express discrete design decisions, such as material types. A disadvantage of using categorical variables is the lack of continuous relaxations, which precludes the use of modern integer programming techniques. We show how to express categorical variables with standard integer modeling techniques, and we illustrate this approach on a load-bearing thermal insulation system. The system consists of a number of insulators of different materials and intercepts that minimize the heat flow from a hot surface to a cold surface. Our new model allows us to employ black-box modeling languages and solvers and illustrates the interplay between integer and nonlinear modeling techniques. We present numerical experience that illustrates the advantage of the standard integer model.

[1]  Sven Leyffer,et al.  On the Global Convergence of a Filter--SQP Algorithm , 2002, SIAM J. Optim..

[2]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[3]  J. Meza,et al.  Using pattern search methods for surface structure determination of nanomaterials , 2006 .

[4]  J. Dennis,et al.  Mixed Variable Optimization of the Number and Composition of Heat Intercepts in a Thermal Insulation System , 2001 .

[5]  Jeff T. Linderoth,et al.  FilMINT: An Outer-Approximation-Based Solver for Nonlinear Mixed Integer Programs , 2008 .

[6]  I. Grossmann,et al.  An LP/NLP based branch and bound algorithm for convex MINLP optimization problems , 1992 .

[7]  Omprakash K. Gupta,et al.  Branch and Bound Experiments in Convex Nonlinear Integer Programming , 1985 .

[8]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[9]  J. Dennis,et al.  Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems , 2004 .

[10]  M. Abramson Mixed Variable Optimization of a Load-Bearing Thermal Insulation System Using a Filter Pattern Search Algorithm , 2004 .

[11]  Mark A. Abramson,et al.  Optimal sensor placement for enhancing sensitivity to change in stiffness for structural health monitoring , 2008 .

[12]  Charles Audet,et al.  Pattern Search Algorithms for Mixed Variable Programming , 2000, SIAM J. Optim..

[13]  R. J. Dakin,et al.  A tree-search algorithm for mixed integer programming problems , 1965, Comput. J..

[14]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[15]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[16]  Hong Zhang,et al.  Optimal sensor placement , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[17]  I. Grossmann Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques , 2002 .

[18]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..