Functional Currents: A New Mathematical Tool to Model and Analyse Functional Shapes

This paper introduces the concept of functional current as a mathematical framework to represent and treat functional shapes, i.e. submanifold-supported signals. It is motivated by the growing occurrence, in medical imaging and computational anatomy, of what can be described as geometrico-functional data, that is a data structure that involves a deformable shape (roughly a finite dimensional submanifold) together with a function defined on this shape taking values in another manifold. Whereas mathematical currents have already proved to be very efficient theoretically and numerically to model and process shapes as curves or surfaces, they are limited to the manipulation of purely geometrical objects. We show that the introduction of the concept of functional currents offers a genuine solution to the simultaneous processing of the geometric and signal information of any functional shape. We explain how functional currents can be equipped with a Hilbertian norm that successfully combines the geometrical and functional content of functional shapes under geometrical and functional perturbations, thus paving the way for various processing algorithms. We illustrate this potential on two problems: the redundancy reduction of functional shape representations through matching pursuit schemes on functional currents and the simultaneous geometric and functional registration of functional shapes under diffeomorphic transport.

[1]  Xavier Pennec,et al.  Statistical Computing on Manifolds: From Riemannian Geometry to Computational Anatomy , 2009, ETVC.

[2]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[3]  L. Younes Shapes and Diffeomorphisms , 2010 .

[4]  S. Lang Differential and Riemannian Manifolds , 1996 .

[5]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[6]  Joan Alexis Glaunès Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique , 2005 .

[7]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[8]  Paul M. Thompson,et al.  A framework for computational anatomy , 2002 .

[9]  Karl J. Friston,et al.  CHAPTER 4 – Rigid Body Registration , 2007 .

[10]  Daniel Rueckert,et al.  Simultaneous Multi-scale Registration Using Large Deformation Diffeomorphic Metric Mapping , 2011, IEEE Transactions on Medical Imaging.

[11]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[12]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[13]  Alain Trouvé,et al.  Local Geometry of Deformable Templates , 2005, SIAM J. Math. Anal..

[14]  Ali R. Khan,et al.  A Combined Surface And VOlumetric Registration (SAVOR) Framework to Study Cortical Biomarkers and Volumetric Imaging Data , 2009, MICCAI.

[15]  Eberhard Zeidler,et al.  Applied Functional Analysis: Applications to Mathematical Physics , 1995 .

[16]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[17]  T. O’Neil Geometric Measure Theory , 2002 .

[18]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[19]  Anuj Srivastava,et al.  Statistical Shape Analysis , 2014, Computer Vision, A Reference Guide.

[20]  Alain Trouvé,et al.  Sparse Approximation of Currents for Statistics on Curves and Surfaces , 2008, MICCAI.

[21]  David G. Kendall,et al.  Shape & Shape Theory , 1999 .

[22]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[23]  D. Mumford,et al.  Riemannian Geometries on Spaces of Plane Curves , 2003, math/0312384.

[24]  Xavier Pennec,et al.  A Multi-scale Kernel Bundle for LDDMM: Towards Sparse Deformation Description across Space and Scales , 2011, IPMI.

[25]  Georges de Rham Variétés différentiables : formes, courants, formes harmoniques , 1955 .

[26]  Michael I. Miller,et al.  The emerging discipline of Computational Functional Anatomy , 2009, NeuroImage.

[27]  Alain Trouvé,et al.  Statistical models of sets of curves and surfaces based on currents , 2009, Medical Image Anal..

[28]  Stanley Durrleman,et al.  Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. (Modèles statistiques de courants pour mesurer la variabilité anatomique de courbes, de surfaces et de leur évolution) , 2010 .

[29]  M. Bel Registration , 1892, Science.

[30]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[31]  Alain Trouvé,et al.  Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents , 2011, NeuroImage.

[32]  Bryan R. Conroy,et al.  Function-based Intersubject Alignment of Human Cortical Anatomy , 2009, Cerebral cortex.