Polarization tunable bidirectional photoresponse in Van der Waals αIn2Se3

[1]  R. Quhe,et al.  Symmetric and Excellent Scaling Behavior in Ultrathin n‐ and p‐Type Gate‐All‐Around InAs Nanowire Transistors , 2023, Advanced Functional Materials.

[2]  Yi Zhang,et al.  Epitaxial Growth of Large Area Two-Dimensional Ferroelectric α-In2Se3. , 2023, Nano letters.

[3]  L. You,et al.  Towards two-dimensional van der Waals ferroelectrics , 2023, Nature Materials.

[4]  S. Lau,et al.  Phase-controllable large-area two-dimensional In_2Se_3 and ferroelectric heterophase junction , 2022, Nature Nanotechnology.

[5]  R. Tenne,et al.  Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system , 2022, Nature Communications.

[6]  K. Loh,et al.  Ferroelectrics-Integrated Two-Dimensional Devices toward Next-Generation Electronics. , 2022, ACS nano.

[7]  Yulong Liao,et al.  Tunable Bi‐directional Photoresponse in Hybrid PtSe2−x Thin Films Based on Precisely Controllable Selenization Engineering , 2022, Advanced Functional Materials.

[8]  Shengbai Zhang,et al.  Two‐dimensional In 2 Se 3 : A rising advanced material for ferroelectric data storage , 2022, InfoMat.

[9]  Mukhtiyar Singh,et al.  A first-principle study of electronic, thermoelectric, and optical properties of sulfur doped c-HfO2 , 2022, Physica Scripta.

[10]  S. Lodha,et al.  Polarity-Tunable Photocurrent through Band Alignment Engineering in a High-Speed WSe2/SnSe2 Diode with Large Negative Responsivity. , 2022, ACS nano.

[11]  S. Pal,et al.  A review on ferroelectric systems for next generation photovoltaic applications , 2022, Journal of Physics D: Applied Physics.

[12]  Wenguang Zhu,et al.  Control of photocurrent and multi-state memory by polar order engineering in 2H-stacked α-In2Se3 ferroelectric , 2022, Science China Materials.

[13]  Wenguang Zhu,et al.  Tunable Band Alignments in 2D Ferroelectric α-In2Se3 Based Van der Waals Heterostructures , 2021, ACS Applied Electronic Materials.

[14]  Jing Lu,et al.  Sub-10 nm two-dimensional transistors: Theory and experiment , 2021, Physics Reports.

[15]  Yihong Chen,et al.  Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision , 2021, Nature Communications.

[16]  Deren Yang,et al.  Dual‐Modal Optoelectronic Synaptic Devices with Versatile Synaptic Plasticity , 2021, Advanced Functional Materials.

[17]  Menghao Wu 100 years of ferroelectricity , 2021, Nature Reviews Physics.

[18]  Zhenxing Wang,et al.  Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p-n junction , 2021, Nano Research.

[19]  Muhammad Hunain Memon,et al.  Bidirectional photocurrent in p–n heterojunction nanowires , 2021, Nature Electronics.

[20]  K. Loh,et al.  Analog and Digital Mode α‐In2Se3 Memristive Devices for Neuromorphic and Memory Applications , 2021, Advanced Electronic Materials.

[21]  Wenzhuo Wu,et al.  Piezo‐Phototronic Effect in 2D α‐In2Se3/WSe2 van der Waals Heterostructure for Photodetector with Enhanced Photoresponse , 2021, Advanced Optical Materials.

[22]  E. Kan,et al.  Controllable vdW Contacts between the Ferroelectric In2Se3 Monolayer and Two-Dimensional Metals , 2021 .

[23]  H. Olin,et al.  Dual-polarity output response-based photoelectric devices , 2021 .

[24]  Zhiyong Zhang,et al.  Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment , 2021, Reports on progress in physics. Physical Society.

[25]  Zhiyong Zhang,et al.  Sub-5 nm Monolayer MoS2 Transistors toward Low-Power Devices , 2021 .

[26]  Yujia Zeng,et al.  Review on Recent Developments in 2D Ferroelectrics: Theories and Applications , 2021, Advanced materials.

[27]  Weida Hu,et al.  Ferroelectric-tuned van der Waals heterojunction with band alignment evolution , 2021, Nature Communications.

[28]  Tongbu Lu,et al.  Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing. , 2020, ACS nano.

[29]  P. Ye,et al.  α-In2Se3 based ferroelectric-semiconductor metal junction for non-volatile memories , 2020, Applied Physics Letters.

[30]  Qi Liu,et al.  A highly CMOS compatible hafnia-based ferroelectric diode , 2020, Nature Communications.

[31]  Ru Huang,et al.  A comprehensive review on emerging artificial neuromorphic devices , 2020, Applied Physics Reviews.

[32]  B. Pradhan,et al.  Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice , 2020, Science Advances.

[33]  Zhiyong Zhang,et al.  Planar Direction‐Dependent Interfacial Properties in Monolayer In2Se3–Metal Contacts , 2019, physica status solidi (b).

[34]  Zhongyuan Liu,et al.  Multifunctional Photodetectors Based on Nanolayered Black Phosphorus/SnS0.5Se1.5 Heterostructures , 2019, ACS Applied Nano Materials.

[35]  L. You,et al.  In‐Plane Ferroelectricity in Thin Flakes of Van der Waals Hybrid Perovskite , 2018, Advanced materials.

[36]  Peng Wang,et al.  Progress, Challenges, and Opportunities for 2D Material Based Photodetectors , 2018, Advanced Functional Materials.

[37]  E. Tsymbal,et al.  Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit , 2018, Nature Communications.

[38]  Feng Miao,et al.  Negative Photoconductance in van der Waals Heterostructure-Based Floating Gate Phototransistor. , 2018, ACS nano.

[39]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[40]  X. Duan,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[41]  Tong Zhang,et al.  Broadband MoS2 Field‐Effect Phototransistors: Ultrasensitive Visible‐Light Photoresponse and Negative Infrared Photoresponse , 2018, Advanced materials.

[42]  Zhenyu Zhang,et al.  Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials , 2017, Nature Communications.

[43]  Pu Huang,et al.  Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene , 2017 .

[44]  Yong-Wei Zhang,et al.  Al‐Doped Black Phosphorus p–n Homojunction Diode for High Performance Photovoltaic , 2017 .

[45]  P. Ajayan,et al.  Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes , 2016, Nature Communications.

[46]  M. Guennou,et al.  Photovoltaics with Ferroelectrics: Current Status and Beyond , 2016, Advanced materials.

[47]  A. Castellanos-Gómez,et al.  Gate Controlled Photocurrent Generation Mechanisms in High-Gain In₂Se₃ Phototransistors. , 2015, Nano letters.

[48]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[49]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[50]  H. Yi,et al.  Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3 , 2011, Advanced materials.

[51]  Huibin Lu,et al.  Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films , 2011 .

[52]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[53]  R. Ramesh,et al.  Photovoltaic effects in BiFeO3 , 2009 .

[54]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[55]  H. Joo,et al.  Schottky barrier effects in the photocurrent of sol–gel derived lead zirconate titanate thin film capacitors , 2000 .

[56]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.