GLOBAL EXISTENCE RESULTS FOR THE ANISOTROPIC BOUSSINESQ SYSTEM IN DIMENSION TWO

Models with a vanishing anisotropic viscosity in the vertical direction are of relevance for the study of turbulent flows in geophysics. This motivates us to study the two-dimensional Boussinesq system with horizontal viscosity in only one equation. In this paper, we focus on the global existence issue for possibly large initial data. We first examine the case where the Navier–Stokes equation with no vertical viscosity is coupled with a transport equation. Second, we consider a coupling between the classical two-dimensional incompressible Euler equation and a transport–diffusion equation with diffusion in the horizontal direction only. For both systems, we construct global weak solutions a la Leray and strong unique solutions for more regular data. Our results rest on the fact that the diffusion acts perpendicularly to the buoyancy force.

[1]  R. Danchin,et al.  Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces , 2008, 0806.4084.

[2]  Dragos Iftimie,et al.  A Uniqueness Result for the Navier-Stokes Equations with Vanishing Vertical Viscosity , 2002, SIAM J. Math. Anal..

[3]  P. Gérard Résultats récents sur les fluides parfaits incompressibles bidimensionnels [d'après J.-Y. Chemin et J.-M. Delort) , 1992 .

[4]  T. Hmidi,et al.  On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity , 2007, Advances in Differential Equations.

[5]  R. Danchin,et al.  Global Well-Posedness Issues for the Inviscid Boussinesq System with Yudovich’s Type Data , 2008, 0806.4081.

[6]  Hajer Bahouri,et al.  Equations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides , 1994 .

[7]  Dongho Chae,et al.  Global regularity for the 2D Boussinesq equations with partial viscosity terms , 2006 .

[8]  J. Chemin,et al.  Théorèmes d’unicité pour le système de navier-stokes tridimensionnel , 1999 .

[9]  J. Chemin,et al.  Fluides parfaits incompressibles , 2018, Astérisque.

[10]  E Weinan,et al.  Small‐scale structures in Boussinesq convection , 1998 .

[11]  Bulletin de la Société Mathématique de France , 2022 .

[12]  B. Desjardins,et al.  Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations , 2006 .

[13]  B. Guo Spectral method for solving two-dimensional Newton-Boussinesq equations , 1989 .

[14]  R. Danchin,et al.  Les theoremes de Leray et de Fujita-Kato pour le systeme de Boussinesq partiellement visqueux. The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity , 2008, 0806.4083.

[15]  J. R. Cannon,et al.  The initial value problem for the Boussinesq equations with data in Lp , 1980 .

[16]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[17]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[18]  Taoufik Hmidi,et al.  On the global well-posedness of the Boussinesq system with zero viscosity , 2007, 0711.3198.

[19]  Taoufik Hmidi,et al.  On the global well-posedness for Boussinesq system , 2007 .

[20]  Isabelle Gallagher,et al.  Fluids with anisotropic viscosity , 2000 .

[21]  木村 竜治,et al.  J. Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag, New York and Heidelberg, 1979, xii+624ページ, 23.5×15.5cm, $39.8. , 1981 .

[22]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[23]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[24]  M. Paicu Équation anisotrope de Navier-Stokes dans des espaces critiques , 2005 .

[25]  Raphaël Danchin,et al.  Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients , 2005 .

[26]  R. Danchin Axisymmetric incompressible flows with bounded vorticity , 2007 .