Dysprosium Mid‐Infrared Lasers: Current Status and Future Prospects

With growing interest in the mid-infrared spectral region, dysprosium has recently been revisited for efficient high-performance infrared source development. Despite historically receiving less attention than other rare earth ions, in recent years lasers utilizing the dysprosium ion as the laser material have set record mid-infrared performance, including tunability from 2.8 to 3.4 um (in addition to 4.3 um lasing), continuous wave powers exceeding 10 W, greater than 73% slope efficiencies, and even ultrafast pulsed operation. Herein, the unique energy level structure and spectroscopy of the dysprosium ion are examined and the major developments that have led to this resurgence of interest and subsequent record mid-infrared laser performance are surveyed. Also mid-infrared applications of emerging dysprosium lasers are highlighted, in addition to surveying the many opportunities that lie ahead.

[1]  R I Woodward,et al.  Watt-level dysprosium fiber laser at 3.15  μm with 73% slope efficiency. , 2018, Optics letters.

[2]  Nasser Peyghambarian,et al.  Pulsed fluoride fiber lasers at 3 μm [Invited] , 2017 .

[3]  Virginie Nazabal,et al.  Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF Fiber Laser , 2016, IEEE Photonics Technology Letters.

[4]  Junjie Zhang,et al.  Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy 3+ /Tm 3+ co-doped tellurite glass , 2017 .

[5]  Trevor M. Benson,et al.  Experimental Investigation of Mid-Infrared Laser Action From Dy3+ Doped Fluorozirconate Fiber , 2018, IEEE Photonics Technology Letters.

[6]  Alessandra Toncelli,et al.  Spectroscopy and dynamic measurements of a Tm,Dy : BaY2F8 crystal , 1999 .

[7]  Animesh Jha,et al.  Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide , 2013 .

[8]  S. Trivedi,et al.  Crystal growth and optical properties of Dy-doped potassium lead bromide (KPb2Br5) , 2006 .

[9]  M. Tonelli,et al.  Yellow laser performance of Dy³⁺ in co-doped Dy,Tb:LiLuF₄. , 2014, Optics letters.

[10]  Helena Jelínková,et al.  Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode. , 2013, Optics letters.

[11]  Setsuhisa Tanabe,et al.  Optical Properties of Dysprosium-Doped Low-Phonon-Energy Glasses for a Potential 1.3 μm Optical Amplifier , 1995 .

[12]  Lili Hu,et al.  2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass , 2015 .

[13]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[14]  Yangjian Cai,et al.  Broadband ∼3 μm mid-infrared emission in Dy 3+ /Yb 3+ co-doped germanate glasses , 2018 .

[15]  Helena Jelínková,et al.  Dysprosium-doped PbGa2S4 laser excited by diode-pumped Nd:YAG laser. , 2010, Optics letters.

[16]  Helena Jelínková,et al.  Resonant pumping of dysprosium doped lead thiogallate by 1.7 μm Er:YLF laser radiation , 2011 .

[17]  M. Brunel,et al.  A simple method to measure the lifetime of excited levels of rare earth ions: application to erbium ions in fluorophosphate glasses , 1996 .

[18]  H. M. Crosswhite,et al.  Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF , 1978 .

[19]  Yasushi Fujimoto,et al.  575 nm laser oscillation in Dy3+-doped waterproof fluoro-aluminate glass fiber pumped by violet GaN laser diodes , 2011, LASE.

[20]  Y. Tsang,et al.  Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ∼ 1.1 μm by an Yb fiber laser , 2011 .

[21]  S. Bowman,et al.  Diode pumped yellow dysprosium lasers. , 2012, Optics express.

[22]  R. I. Woodward,et al.  Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm , 2018, APL Photonics.

[23]  Garry Raymond Jackson,et al.  95 , 2018, The Devil's Fork.

[24]  M. Payne,et al.  Judd-Ofelt parameters of rare earth ions in ZBLA fluoride glass , 1994 .

[25]  D N Payne,et al.  Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass. , 1996, Optics letters.

[26]  Yan Wang,et al.  Investigation of mid-IR luminescence properties in Dy3+/Tm3+-codoped LaF3 single crystals , 2019, Journal of Luminescence.

[27]  Lili Hu,et al.  Mid-infrared luminescence and energy transfer of Dy3+/Tm3+ doped fluorophosphate glass , 2012 .

[28]  V. Orera,et al.  Optical properties of Dy3+ in fluorozirconate glasses , 1988 .

[29]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[30]  J. Hessler,et al.  Fluorescent and dynamic properties of optically excited dysprosium trifluoride , 1984 .

[31]  Samuel Poulain,et al.  Emission beyond 4  μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber. , 2018, Optics letters.

[32]  Réal Vallée,et al.  Towards power scaling of 2.8  μm fiber lasers. , 2018, Optics letters.

[33]  Ralph H. Page,et al.  Optical properties of Dy 3+ - and Nd 3+ -doped KPb 2 Cl 5 , 2001 .

[34]  R. Moncorgé,et al.  Energy transfer processes in (Yb3+, Dy3+) and (Tm3+, Dy3+) codoped LiYF4 and KY3F10 single crystals , 2001 .

[35]  Stuart D. Jackson,et al.  High-Power Broadly Tunable 3- $\mu\hbox{m}$ Fiber Laser for the Measurement of Optical Fiber Loss , 2015, IEEE Photonics Journal.

[36]  Virginie Nazabal,et al.  Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)(65) bulk glasses and fibers , 2013 .

[37]  Virginie Nazabal,et al.  Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers , 2015 .

[38]  Lili Hu,et al.  Synthesis and Infrared Photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass , 2012 .

[39]  Ori Henderson-Sapir,et al.  Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. , 2016, Optics letters.

[40]  W. J. Chung,et al.  Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass , 1997 .

[41]  M. Malinowski,et al.  Short-wavelength emission analysis in Dy:ZBLAN glasses , 2008 .

[42]  Stuart D. Jackson,et al.  The spectroscopy of mid-infrared (2.9 μm) fluorescence and energy transfer in Dy3+-doped tellurite glasses , 2014 .

[43]  I. Ranieri,et al.  Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals , 1997 .

[44]  H. Jelínková,et al.  Dysprosium thiogallate laser: source of mid-infrared radiation at 2.4, 4.3, and 5.4 µm , 2016 .

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  Norman P. Barnes,et al.  Room temperature Dy:YLF laser operation at 4.34 mu m , 1991 .

[47]  M. Payne,et al.  Judd-Ofelt parameters of rare earth ions in ZBLALi, ZBLAN and ZBLAK fluoride glass , 1994 .

[48]  Patrice Camy,et al.  Dy3+ doped CaF2 crystals spectroscopy for the development of Mid-infrared lasers around 3 μm , 2018, Photonics Europe.

[49]  Terence A. King,et al.  Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a "Nd:YAG" laser operating at 1.3 μm , 2006 .

[50]  Stuart D. Jackson,et al.  Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser , 2003 .

[51]  R. S. Quimby,et al.  Modeling of Cascade Lasing in Dy : Chalcogenide Glass Fiber Laser With Efficient Output at 4.5 $\mu$m , 2008, IEEE Photonics Technology Letters.

[52]  Zach DeVito,et al.  Opt , 2017 .

[53]  Xiang Shen,et al.  Investigation of 2.9 μm luminescence properties and energy transfer in Tm3+/Dy3+ co-doped chalcohalide glasses , 2011 .

[54]  Terence A. King,et al.  Efficient 2.96 micron dysprosium-doped ZBLAN fibre laser pumped at 1.3 micron , 2006, SPIE Photonics Europe.

[55]  Cumara B. O’Carroll,et al.  695 , 2019, Critical Care Medicine.

[56]  Réal Vallée,et al.  30  W fluoride glass all-fiber laser at 2.94  μm. , 2015, Optics letters.

[57]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[58]  B. Walsh Judd-Ofelt theory: principles and practices , 2006 .

[59]  Michel Piché,et al.  Femtosecond fiber lasers reach the mid-infrared , 2015 .

[60]  G. Huber,et al.  Dy3+:Lu2O3 as a novel crystalline oxide for mid-infrared laser applications , 2018, Optical Materials Express.

[61]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[62]  Gianluca Galzerano,et al.  Ultrafast Dy3+:fluoride fiber laser beyond 3 μm. , 2019, Optics letters.

[63]  R. Reisfeld,et al.  Intensity parameters and laser analysis of Pr3+ and Dy3+ in oxide glasses☆ , 1979 .

[64]  S. Sujecki,et al.  Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation , 2010 .

[65]  Y. Liu,et al.  Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles. , 2019, Optics Letters.

[66]  J. M. Parker,et al.  OH-absorption in fluoride glass infra-red fibres , 1984 .

[67]  Jacques Lucas,et al.  Optical transitions of Dy3+ ions in fluorozirconate glass , 1988 .

[68]  S A Payne,et al.  Room-temperature laser action at 4.34.4 mum in CaGa(2)S(4):Dy(3+). , 1999, Optics letters.

[69]  S. D. Jackson,et al.  Numerical Modeling of Holmium-Doped Fluoride Fiber Lasers , 2012, IEEE Journal of Quantum Electronics.

[70]  J. Heo,et al.  Mid-infrared emissions and multiphonon relaxation in Dy3+-doped chalcohalide glasses , 1999 .

[71]  Stuart D. Jackson,et al.  Ultrafast pulses from a mid-infrared fiber laser. , 2015, Optics letters.

[72]  E. Snitzer,et al.  Spectroscopy of Dy(3+) in Ge-Ga-S glass and its suitability for 1.3-microm fiber-optical amplifier applications. , 1994, Optics letters.

[73]  D. Sardar,et al.  Optical transitions and absorption intensities of Dy3+ (4f9) in YSGG laser host , 2004 .

[74]  Younes Messaddeq,et al.  Toward all-fiber supercontinuum spanning the mid-infrared , 2017 .

[75]  S. Jackson,et al.  Highly efficient mid-infrared dysprosium fiber laser. , 2016, Optics letters.

[76]  Junjie Zhang,et al.  Low-hydroxy Dy 3+ /Nd 3+ co-doped fluoride glass for broadband 2.9 µm luminescence properties , 2017 .

[77]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[78]  Markus P. Hehlen,et al.  50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application , 2013 .

[79]  R. I. Woodward,et al.  Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing , 2018, APL Photonics.

[80]  L. Johnson,et al.  Laser emission at 3 μ from Dy3+ in BaY2F8 , 1973 .

[81]  Junjie Zhang,et al.  Mid-Infrared 2.86- $\mu \text{m}$ Emission Characteristics in Highly Dy3+ Doped Fluoroaluminate Glass , 2016, IEEE Photonics Technology Letters.

[82]  J. Oswald,et al.  Optical properties of low-phonon-energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses , 2000 .

[83]  Ralph H. Page,et al.  Dy-doped chlorides as gain media for 1.3 /spl mu/m telecommunications amplifiers , 1997 .

[84]  Mohammed Saad,et al.  Dy:fluoroindate Fiber Laser at 4.5 µm with Cascade Lasing , 2013 .

[85]  A. A. Mak,et al.  Rare-earth converters of neodymium laser radiation , 1982 .

[86]  G. Stevens,et al.  Mid-IR fused fiber couplers , 2016, SPIE LASE.

[87]  L. Wetenkamp,et al.  Optical properties of rare earth-doped ZBLAN glasses , 1992 .

[88]  Petr Koranda,et al.  Oscillation properties of dysprosium-doped lead thiogallate crystal. , 2009, Optics letters.

[89]  Leslie Brandon Shaw,et al.  Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber , 2001 .

[90]  Virginie Nazabal,et al.  Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission , 2017, Journal of Lightwave Technology.

[91]  Yasushi Fujimoto,et al.  Yellow laser oscillation in Dy 3+ -doped waterproof fluoro-aluminate glass fibre pumped by 398.8 nm GaN laser diodes , 2010 .

[92]  Stuart D. Jackson,et al.  Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass , 2010 .

[93]  G. Sigel,et al.  Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF_3 , 1991 .

[94]  Y Sheng,et al.  Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. , 2007, Optics letters.

[95]  S. Jackson,et al.  Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm. , 2018, Optics letters.

[96]  Trevor M. Benson,et al.  Mid-infrared emission in Tb^3+-doped selenide glass fiber , 2017 .

[97]  J. B. Gruber,et al.  Optical spectra, energy levels and branching ratios of trivalent dysprosium-doped yttrium scandium gallium garnet , 1996 .

[98]  E. Brinkmeyer,et al.  Pulse generation in fiber lasers with frequency shifted feedback , 1994 .

[99]  Simple model for pulse formation in lasers with a frequency-shifting element and nonlinearity , 1995 .

[100]  Jens Limpert,et al.  Laser oscillation in yellow and blue spectral range in Dy/sup 3+/:ZBLAN , 2000 .

[101]  Martin Ams,et al.  Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers. , 2017, Optics express.

[102]  Virginie Nazabal,et al.  Dy3+ doped GeGaSbS fluorescent fiber at 4.4 μm for optical gas sensing: Comparison of simulation and experiment , 2016 .

[103]  Jing Zhang,et al.  Refractive Index and Temperature Sensing Based on an Optoelectronic Oscillator Incorporating a Fabry–Perot Fiber Bragg Grating , 2018, IEEE Photonics Journal.

[104]  S. Jackson,et al.  Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback. , 2019, Optics letters.

[105]  V. Aallos,et al.  On the measurement of fundamental mode bend loss in large-mode-area optical fibers. , 2017, Applied optics.

[106]  Yan Wang,et al.  Mid-infrared emission in Dy:YAlO 3 crystal , 2014 .

[107]  R I Woodward,et al.  Q-switched Dy:ZBLAN fiber lasers beyond 3 μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. , 2019, Optics Express.

[108]  M. Chamarro,et al.  Judd-Ofelt Analysis and Multiphonon Relaxations of Rare Earth Ions in Fluorohafnate Glasses , 1991 .

[109]  Bahram Zandi,et al.  Optical spectroscopy and visible stimulated emission of Dy 3 + ions in monoclinic α − KY ( WO 4 ) 2 and α − KGd ( WO 4 ) 2 crystals , 2002 .

[110]  K. Rajnak,et al.  Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+ , 1968 .

[111]  Nasser Peyghambarian,et al.  High-power ZBLAN glass fiber lasers: Review and prospect , 2010 .

[112]  Junjie Zhang,et al.  Broadband 2.9 μm emission and high energy transfer efficiency in Er3+/Dy3+ co-doped fluoroaluminate glass , 2018 .

[113]  Y. Hang,et al.  Spectroscopic characterizations of Dy:LaF3 crystal , 2017 .

[114]  G. Dieke,et al.  Emission Spectra of the Doubly and Triply Ionized Rare Earths , 1961 .

[115]  P. Grünberg,et al.  Crystal Field in Dysprosium Garnets , 1969 .

[116]  Stuart D. Jackson,et al.  High-power mid-infrared femtosecond fiber laser in the water vapor transmission window , 2016 .

[117]  Y. Messaddeq,et al.  Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission. , 2018, Optics letters.

[118]  Anping Yang,et al.  Mid-infrared luminescence of Dy3+ ions in modified Ga-Sb-S chalcogenide glasses and fibers , 2017 .

[119]  M. Tonelli,et al.  Optical spectroscopy of BaY2F8:Dy3+ , 2005 .

[120]  Ravinder K. Jain,et al.  ‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser , 2000 .

[121]  W. Ryba-Romanowski,et al.  Optical spectroscopy of Dy3+ ions doped in KY(WO4)2 crystals , 1998 .

[122]  L. Merkle,et al.  Crystal-field splitting of energy levels of rare-earth ions Dy3+(4f9) and Yb3+(4f13) in M(II) sites in the fluorapatite crystal Sr5(PO4)3F , 1998 .

[123]  N. V. Lichkova,et al.  Optical spectroscopy of the RbPb 2 Cl 5 :Dy 3+ laser crystal and oscillation at 5.5 μm at room temperature , 2007 .

[124]  E. Snitzer,et al.  Sol-gel synthesis of rare-earth-doped lanthanum halides for highly efficient 1.3-µm optical amplification , 1997 .

[125]  Renata Reisfeld,et al.  Chapter 58 Excited state phenomena in vitreous materials , 1987 .

[126]  Jong Heo,et al.  Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses , 1996 .

[127]  M. Nostrand,et al.  COMPARATIVE SPECTROSCOPIC STUDY OF THE DY3+ DOPED DOUBLE CHLORIDE AND DOUBLE FLUORIDE CRYSTALS FOR TELECOMMUNICATION AMPLIFIERS AND IR LASERS , 1999 .

[128]  Matthew R Majewski,et al.  Tunable dysprosium laser. , 2016, Optics letters.

[129]  Réal Vallée,et al.  10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm. , 2019, Optics letters.

[130]  R. S. Quimby,et al.  Anomalous nonradiative decay in Dy-doped glasses and crystals. , 2017, Optics letters.

[131]  Woohong Kim,et al.  Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development. , 2015, Optics letters.

[132]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[133]  Martin Rochette,et al.  Broadband and Wavelength-Dependent Chalcogenide Optical Fiber Couplers , 2017, IEEE Photonics Technology Letters.