Mechanistic studies of light-induced charge separation at semiconductor/liquid interfaces

The energy crisis of the early 1970s stimulated numerous investigations of semiconductor/liquid junctions for the conversion and storage of solar energy. Although similar in concept to solid-state photovoltaic devices, semiconductor /liquid junctions offered the potential for inexpensive, chemically based energy-conversion devices, with the accompanying potential to effect the direct conversion of light into chemical fuels.

[1]  A. Heller,et al.  Semiconductor liquid junction solar cells based on anodic sulphide films , 1976, Nature.

[2]  K. Rajeshwar,et al.  PHOTOELECTROCHEMICAL BEHAVIOR OF N-GALLIUM ARSENIDE ELECTRODES IN AMBIENT-TEMPERATURE MOLTEN-SALT ELECTROLYTES , 1980 .

[3]  Wrighton Photoelectrochemical conversion of optical energy to electricity and fuels. Interim technical report , 1979 .

[4]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[5]  C. Coulson,et al.  The electronic properties of tetrahedral intermetallic compounds I. Charge distribution , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  R. Rauh,et al.  Electrochemical Photovoltaic Cells Based on n ‐ GaAs and the Triiodide/Iodide Redox Couple in Acetonitrile , 1982 .

[7]  A. Ricco,et al.  Characterization of n‐Type Semiconducting Tungsten Disulfide Photoanodes in Aqueous and Nonaqueous Electrolyte Solutions Photo‐oxidation of Halides with High Efficiency , 1982 .

[8]  K. Ploog Microscopical Structuring of Solids by Molecular Beam Epitaxy—Spatially Resolved Materials Synthesis , 1988 .

[9]  N. Lewis,et al.  Studies of polycrystalline n-GaAs junctions: effects of metal ion chemisorption on the photoelectrochemical properties of n-GaAs/KOH-Se−/2−, n-GaAs/CH3CN-ferrocene+/0, and n-GaAs/Au interfaces , 1988 .

[10]  R. Noufi,et al.  Photoelectrochemical Evaluation of the n ‐ CdSe / Methanol / Ferro ‐ Ferricyanide System , 1981 .

[11]  Jimmy C. Yu,et al.  Semiconductor―olefin adducts. Photoluminescent properties of cadmium sulfide and cadmium selenide in the presence of butenes , 1989 .

[12]  G. Meyer,et al.  Evidence for adduct formation at the semiconductor-gas interface. Photoluminescent properties of cadmium selenide in the presence of amines , 1988 .

[13]  N. Lewis,et al.  Efficient photovoltaic devices for InP semiconductor/liqud junctions , 1989, Nature.

[14]  H. Gerischer,et al.  The role of semiconductor structure and surface properties in photoelectrochemical processes , 1983 .

[15]  J. Bruce,et al.  Characterization of the Interface Energetics for N-Type Cadmium Selenide/Non-Aqueous Electrolyte Junctions. , 1982 .

[16]  K. Rajeshwar,et al.  Photoelectrochemical Characterization of the n ‐ InP / Room Temperature Molten Salt Electrolyte Interface , 1982 .

[17]  Krishnan Rajeshwar,et al.  Materials aspects of photoelectrochemical energy conversion , 1985 .

[18]  P. Kohl,et al.  Semiconductor Electrodes XVIII. Liquid Junction Photovoltaic Cells Based on n-GaAs Electrodes and Acetonitrile Solutions , 1979 .

[19]  N. Lewis,et al.  n-Type silicon photoelectrochemistry in methanol: Design of a 10.1% efficient semiconductor/liquid junction solar cell. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Bard,et al.  The Concept of Fermi Level Pinning at Semiconductor/Liquid Junctions. Consequences for Energy Conversion Efficiency and Selection of Useful Solution Redox Couples in Solar Devices , 1980 .

[21]  N. Lewis,et al.  A 14% efficient nonaqueous semiconductor/liquid junction solar cell , 1984 .

[22]  Kinetic studies of carrier transport and recombination at the n-silicon/methanol interface , 1986 .

[23]  N. Lewis,et al.  Studies of the n-GaAs/KOH−Se22−−Se2− semiconductor/liquid junction , 1989 .

[24]  A. Bard,et al.  Semiconductor electrodes: Part 38. Photoelectrochemical behavior of n- and p-type GaAs electrodes in tetrahydrofuran solutions , 1981 .

[25]  H. Gerischer,et al.  The mechanisms of the decomposition of semiconductors by electrochemical oxidation and reduction , 1968 .

[26]  N. Lewis,et al.  Evidence against surface state limitations on efficiency of p-Si/CH3CN junctions , 1984, Nature.

[27]  A. Heller,et al.  Chemical passivation of carrier recombination at acid interfaces and grain boundaries of p-indium phosphide , 1983 .

[28]  M. Wrighton,et al.  n-Type Si-based photoelectrochemical cell: New liquid junction photocell using a nonaqueous ferricenium/ferrocene electrolyte. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Wrighton,et al.  n-Type Molybdenum Diselenide-Based Photoelectrochemical Cells: Evidence for Fermi Level Pinning and Comparison of the Efficiency for Conversion of Light to Electricity with Various Solvent/Halogen/Halide Combinations , 1980 .

[30]  N. Lewis,et al.  630‐mV open circuit voltage, 12% efficient n‐Si liquid junction , 1984 .

[31]  H. Gerischer Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern , 1960 .

[32]  N. Lewis,et al.  Chemical modification of n-GaAs electrodes with Os3+ gives a 15% efficient solar cell , 1987, Nature.

[33]  R. Memming,et al.  Photoexcitation and Luminescence in Redox Processes on Gallium Phosphide Electrodes , 1969 .

[34]  G. Nagasubramanian,et al.  On the role of surface states in semiconductor electrode photoelectrochemical cells , 1980 .

[35]  N. Lewis A Quantitative Investigation of the Open‐Circuit Photovoltage at the Semiconductor/Liquid Interface , 1984 .

[36]  D. Whitten,et al.  Photophysics of quantized colloidal semiconductors. Dramatic luminescence enhancement by binding of simple amines , 1986 .

[37]  A. Bard,et al.  Semiconductor Electrodes. 20. Photogeneration of Solvated Electrons on P-Type Gallium Arsenide Electrodes in Liquid Ammonia , 1979 .

[38]  D. N. Bose,et al.  Evidence for Amphoteric Behavior of Ru on CdTe Surfaces , 1986 .

[39]  N. Lewis,et al.  n‐type GaAs photoanodes in acetonitrile: Design of a 10.0% efficient photoelectrode , 1983 .

[40]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[41]  M. Wrighton,et al.  A comparison of the interface energetics for n-type cadmium sulfide/- and cadmium telluride/nonaqueous electrolyte junctions , 1980 .

[42]  Wolfgang W. Gärtner,et al.  Depletion-Layer Photoeffects in Semiconductors , 1959 .

[43]  L. Brus,et al.  Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution , 1983 .

[44]  A. Heller,et al.  Photocurrent spectroscopy of semiconductor electrodes in liquid junction solar cells , 1978 .

[45]  A. Heller,et al.  11.5% solar conversion efficiency in the photocathodically protected p‐InP/V3+‐V2+‐HCI/C semiconductor liquid junction cell , 1981 .

[46]  Bruce A. Parkinson,et al.  On the efficiency and stability of photoelectrochemical devices , 1984 .

[47]  P. Boddy Oxygen Evolution on Semiconducting TiO2 , 1968 .

[48]  Bruce A. Parkinson,et al.  Effects of Cations on the Performance of the Photoanode in the n-GaAs |K2Se-K2Se2-KOH|C Semiconductor Liquid Junction Solar Cell , 1979 .