The General Setting
暂无分享,去创建一个
[1] J. Van der Jeugt,et al. On the composition factors of Kac modules for the Lie superalgebras sl(m/n) , 1992 .
[2] P. Roman,et al. Symmetry in Physics , 1969 .
[3] Minoru Wakimoto,et al. Integrable Highest Weight Modules over Affine Superalgebras and Number Theory , 1994 .
[4] Alfredo Capelli. Lezioni sulla teoria delle forme algebriche , 1902 .
[5] Claudio Procesi,et al. A characteristic free approach to invariant theory , 1976 .
[6] Adriano M. Garsia,et al. Relations between Young's natural and the Kazhdan-Lusztig representations of Sn , 1988 .
[7] Jacob Towber,et al. Two new functors from modules to algebras , 1977 .
[8] A Brini,et al. Capelli's theory, Koszul maps, and superalgebras. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[9] D. Eisenbud,et al. Young diagrams and determinantal varieties , 1980 .
[10] Jacques Deruyts. Essai d'une théorie générale des formes algébriques , 1890 .
[11] G C Rota,et al. Standard basis in supersymplectic algebras. , 1989, Proceedings of the National Academy of Sciences of the United States of America.
[12] Amitai Regev,et al. Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras , 1987 .
[13] A Brini,et al. Gordan-Capelli series in superalgebras. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[14] M. Marcus. Finite dimensional multilinear algebra , 1973 .
[15] David A. Buchsbaum,et al. Schur Functors and Schur Complexes , 1982 .
[16] Yuval Ne'eman,et al. Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry) , 1975 .
[17] Itzhak Bars,et al. Dimension and Character Formulas for Lie Supergroups , 1981 .
[18] Gian-Carlo Rota,et al. On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory , 1974 .
[19] J. A. Green,et al. Classical Invariants and the General Linear Group , 1991 .
[20] Jacques Désarménien. An algorithm for the rota straightening formula , 1980, Discret. Math..
[21] M. Scheunert,et al. The Theory of Lie Superalgebras: An Introduction , 1979 .
[22] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[23] Amitai Regev,et al. Hook young diagrams, combinatorics and representations of Lie superalgebras , 1983 .
[24] Victor G. Kac,et al. Representations of classical lie superalgebras , 1978 .
[25] Charles W. Curtis,et al. Pioneers of representation theory , 1962 .
[26] Victor G. Kac,et al. Characters of typical representations of classical lie superalgebras , 1977 .
[27] G C Rota,et al. Supersymmetric Hilbert space. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[28] T. Inui,et al. The Symmetric Group , 1990 .
[29] James Green,et al. Polynomial representations of GLn , 1980 .
[30] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[31] Alfred Young,et al. The collected papers of Alfred Young 1873-1940 , 1977 .
[32] J. Dieudonne,et al. Invariant theory, old and new , 1971 .
[33] Michael Clausen. Letter Place Algebras and a Characteristic-Free Approach to the Representation Theory of the General Linear and Symmetric Groups, I , 1979 .
[34] R. Carter. Lie Groups , 1970, Nature.
[35] Andrew H. Wallace. Invariant Matrices and the Gordan-Capelli Series , 1952 .
[36] Vera Serganova,et al. Institute for Mathematical Physics Generic Irreducible Representations of Finite-dimensional Lie Superalgebras Generic Irreducible Representations of Finite-dimensional Lie Superalgebras , 2022 .
[37] R. Howe,et al. Remarks on classical invariant theory , 1989 .
[38] Bruce E. Sagan,et al. The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.
[39] F. D. Grosshans. The Symbolic Method and Representation Theory , 1993 .
[40] Gian-Carlo Rota,et al. On the foundations of combinatorial theory III , 1969 .
[41] Peter D. Jarvis,et al. Diagram and superfield techniques in the classical superalgebras , 1981 .
[42] Gian-Carlo Rota,et al. Invariant theory and superalgebras , 1987 .
[43] L. M. M.-T.. The Theory of Determinants, Matrices and Invariants , 1929, Nature.
[44] I. Gel'fand,et al. Structure of representations generated by vectors of highest weight , 1971 .
[45] Joseph P. S. Kung,et al. Invariant theory, Young bitableaux, and combinatorics , 1978 .
[46] Andrea Brini,et al. Remark on the Branching theorem and supersymmetric algebras , 1991 .
[47] Hermann Boerner,et al. Über die rationalen Darstellungen der allgemeinen linearen Gruppe , 1948 .
[48] T. B.,et al. The Theory of Determinants , 1904, Nature.
[49] A Brini,et al. Capelli bitableaux and Z-forms of general linear Lie superalgebras. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[50] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[51] Gian-Carlo Rota,et al. On the Exterior Calculus of Invariant Theory , 1985 .
[52] B. Kostant,et al. Graded manifolds, graded Lie theory, and prequantization , 1977 .
[53] A Brini,et al. Young-Capelli symmetrizers in superalgebras. , 1989, Proceedings of the National Academy of Sciences of the United States of America.
[54] A. Brini,et al. The umbral symbolic method for supersymmetric tensors , 1992 .
[55] D. G. Mead,et al. Determinantal ideals, identities, and the Wronskian. , 1972 .