Exact Arrangement Computation for Cubic Curves

This thesis presents an exact and complete method to compute the arrangement of a finite set of segments of algebraic curves of degree up to 3 which has a practically feasible efficiency. For this, an improved version of the sweep line algorithm by Bentley and Ottmann (1979) is supplied with basic geometric operations that are realized by efficient techniques of symbolic computation with polynomials. There is a software implementation of this method written in C++, and the thesis contains running time measurements.

[1]  A. Zygmund On a Theorem of Ostrowski , 1931 .

[2]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[3]  H. Hasse Vorlesungen über Zahlentheorie , 1950 .

[4]  A. Ostrowski Note on Vincent's Theorem , 1950 .

[5]  Dilip K. Banerji,et al.  Sign Detection in Residue Number Systems , 1969, IEEE Transactions on Computers.

[6]  E. Hecke Vorlesungen Uber Die Theorie Der Algebraischen Zahlen , 1970 .

[7]  S. Lang Complex Analysis , 1977 .

[8]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[9]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[10]  T. Sakkalis The topological configuration of a real algebraic curve , 1991, Bulletin of the Australian Mathematical Society.

[11]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[12]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[13]  Gabriel Taubin,et al.  Rasterizing algebraic curves and surfaces , 1994, IEEE Computer Graphics and Applications.

[14]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[15]  Chee Yap,et al.  The exact computation paradigm , 1995 .

[16]  D. Du,et al.  Computing in Euclidean Geometry: (2nd Edition) , 1995 .

[17]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[18]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[19]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[20]  Kurt Mehlhorn,et al.  Implementation of a sweep line algorithm for the Straight \& Line Segment Intersection Problem , 1994 .

[21]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[22]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[23]  Robert Bix,et al.  Conics and Cubics: A Concrete Introduction to Algebraic Curves , 1998 .

[24]  Matthew H. Austern Generic programming and the STL - using and extending the C++ standard template library , 1999, Addison-Wesley professional computing series.

[25]  Dinesh Manocha,et al.  MAPC: a library for efficient and exact manipulation of algebraic points and curves , 1999, SCG '99.

[26]  Chee-Keng Yap,et al.  A core library for robust numeric and geometric computation , 1999, SCG '99.

[27]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[28]  Xiaorong Hou,et al.  Subresultants with the Bézout Matrix , 2000 .

[29]  Olivier Devillers,et al.  Algebraic methods and arithmetic filtering for exact predicates on circle arcs , 2000, SCG '00.

[30]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[31]  Kurt Mehlhorn,et al.  A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals , 2000, Algorithmica.

[32]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[33]  Michael Hoffmann,et al.  An adaptable and extensible geometry kernel , 2001, Comput. Geom..

[34]  A Remark on the Sign Variation Method for Real Root Isolation , 2001 .

[35]  Günter Rote,et al.  Division-Free Algorithms for the Determinant and the Pfaffian: Algebraic and Combinatorial Approaches , 2001, Computational Discrete Mathematics.

[36]  Elmar Schömer,et al.  Computing a 3-dimensional cell in an arrangement of quadrics: exactly and actually! , 2001, SCG '01.

[37]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[38]  Elmar Schömer,et al.  Sweeping Arrangements of Cubic Segments Exactly and Efficiently , 2002 .

[39]  Kurt Mehlhorn,et al.  A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons , 2002, ESA.

[40]  Ron Wein,et al.  High-Level Filtering for Arrangements of Conic Arcs , 2002, ESA.

[41]  Ralph R. Martin,et al.  Comparison of interval methods for plotting algebraic curves , 2002, Comput. Aided Geom. Des..

[42]  Kurt Mehlhorn,et al.  Infimaximal Frames: A Technique for Making Lines Look Like Segments , 2003, Int. J. Comput. Geom. Appl..

[43]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[44]  Elmar Schömer,et al.  An exact and efficient approach for computing a cell in an arrangement of quadrics , 2004, Comput. Geom..