Scaling of the mean and variance of population dynamics under fluctuating regimes

[1]  E. Ranta,et al.  Environmental Fluctuations and Level of Density-Compensation Strongly Affects the Probability of Fixation and Fixation Times , 2011, Bulletin of mathematical biology.

[2]  Carlos J. Melián,et al.  NEUTRAL BIODIVERSITY THEORY CAN EXPLAIN THE IMBALANCE OF PHYLOGENETIC TREES BUT NOT THE TEMPO OF THEIR DIVERSIFICATION , 2011, Evolution; international journal of organic evolution.

[3]  P. Funch,et al.  Size is not everything: a meta-analysis of geographic variation in microscopic eukaryotes , 2011 .

[4]  H. Wittmer Allee Effects in Ecology and Conservation , 2010 .

[5]  D. H. Reed,et al.  Albatrosses, eagles and newts, Oh My!: exceptions to the prevailing paradigm concerning genetic diversity and population viability? , 2010 .

[6]  Hugh P Possingham,et al.  Should metapopulation restoration strategies increase patch area or number of patches? , 2010, Ecological applications : a publication of the Ecological Society of America.

[7]  R. Frankham,et al.  Pragmatic population viability targets in a rapidly changing world , 2010 .

[8]  Mike S. Fowler,et al.  Ecological and evolutionary dynamics under coloured environmental variation. , 2009, Trends in ecology & evolution.

[9]  Susanne A. Fritz,et al.  Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. , 2009, Ecology letters.

[10]  D. H. Reed,et al.  Inbreeding–environment interactions increase extinction risk , 2009 .

[11]  B. Meerson,et al.  How colored environmental noise affects population extinction. , 2008, Physical review letters.

[12]  V. Loeschcke,et al.  On the brink between extinction and persistence , 2008, Biology Direct.

[13]  S. Rice A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution , 2008, BMC Evolutionary Biology.

[14]  J. Vandermeer,et al.  The importance of matrix quality in fragmented landscapes: Understanding ecosystem collapse through a combination of deterministic and stochastic forces , 2008 .

[15]  Carlos A. Braumann,et al.  Growth and extinction of populations in randomly varying environments , 2008, Comput. Math. Appl..

[16]  T. Schoener,et al.  How Is Extinction Risk Related to Population‐Size Variability over Time? A Family of Models for Species with Repeated Extinction and Immigration , 2008, The American Naturalist.

[17]  N. Stenseth,et al.  Environmental forcing and genetic differentiation in subdivided populations , 2008 .

[18]  C. Fox,et al.  Conservation biology : evolution in action , 2008 .

[19]  V. Loeschcke,et al.  The consequences of the variance-mean rescaling effect on effective population size , 2007 .

[20]  R. Frankham Effective population size/adult population size ratios in wildlife: a review. , 1995, Genetical research.

[21]  Ford Ballantyne,et al.  The observed range for temporal mean‐variance scaling exponents can be explained by reproductive correlation , 2007 .

[22]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[23]  D. Rubenstein,et al.  The Impact of Increased Environmental Stochasticity Due to Climate Change on the Dynamics of Asiatic Wild Ass , 2006, Conservation biology : the journal of the Society for Conservation Biology.

[24]  S. Lele,et al.  ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE, AND OBSERVATION ERROR , 2006 .

[25]  L. Kruuk,et al.  Environmental Coupling of Selection and Heritability Limits Evolution , 2006, PLoS biology.

[26]  J. L. Gittleman,et al.  Latent extinction risk and the future battlegrounds of mammal conservation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Shripad Tuljapurkar,et al.  Temporal autocorrelation and stochastic population growth. , 2006, Ecology letters.

[28]  M. Boyce,et al.  Demography in an increasingly variable world. , 2006, Trends in ecology & evolution.

[29]  V. Grimm,et al.  Population dynamics of a polychaete during three El Nino events: disentangling biotic and abiotic factors , 2005 .

[30]  D. Garcelon,et al.  A population viability analysis for the Island Fox on Santa Catalina Island, California , 2005 .

[31]  Otso Ovaskainen,et al.  Metapopulation dynamics in highly fragmented landscapes , 2004 .

[32]  T. Fenchel,et al.  Response from Fenchel and Finlay , 2004 .

[33]  Oscar E. Gaggiotti,et al.  Ecology, genetics, and evolution of metapopulations , 2004 .

[34]  Pablo Inchausti,et al.  THE INCREASING IMPORTANCE OF 1/f-NOISES AS MODELS OF ECOLOGICAL VARIABILITY , 2004 .

[35]  Christian Wissel,et al.  The intrinsic mean time to extinction: a unifying approach to analysing persistence and viability of populations , 2004 .

[36]  D. H. Reed Extinction risk in fragmented habitats , 2004 .

[37]  Otso Ovaskainen,et al.  4 – Metapopulation Dynamics in Highly Fragmented Landscapes , 2004 .

[38]  P. Inchausti,et al.  On the relation between temporal variability and persistence time in animal populations , 2003 .

[39]  D. H. Reed,et al.  Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates , 2003 .

[40]  Veijo Kaitala,et al.  Extinction risk under coloured environmental noise , 2000 .

[41]  W. Kunin,et al.  Extinction risk and the 1/f family of noise models. , 1999, Theoretical population biology.

[42]  Øyvind Bakke,et al.  Demographic and Environmental Stochasticity Concepts and Definitions , 1998 .

[43]  Andy W. Sheppard,et al.  Frontiers of population ecology , 1997 .

[44]  Per Lundberg,et al.  Noise colour and the risk of population extinctions , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  P. Foley,et al.  Predicting Extinction Times from Environmental Stochasticity and Carrying Capacity , 1994 .

[46]  R. Lande Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes , 1993, The American Naturalist.

[47]  S. Pimm Life on an intermittent edge. , 1993, Trends in ecology & evolution.

[48]  L. Taylor,et al.  COMPARATIVE SYNOPTIC DYNAMICS. I. RELATIONSHIPS BETWEEN INTER- AND INTRA-SPECIFIC SPATIAL AND TEMPORAL VARIANCE/MEAN POPULATION PARAMETERS , 1982 .

[49]  E. Leigh,et al.  The average lifetime of a population in a varying environment. , 1981, Journal of theoretical biology.

[50]  R. Lewontin,et al.  On population growth in a randomly varying environment. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[51]  L. R. Taylor,et al.  Aggregation, Variance and the Mean , 1961, Nature.