On strong anomalous diffusion

Superdiffusive behavior, i.e., 〈x2(t)〉∼t2ν, with ν>1/2, is in general not completely characterized by a unique exponent. We study some systems exhibiting strong anomalous diffusion, i.e., 〈∣x(t)∣q〉∼tqν(q) where ν(2)>1/2 and qν(q) is not a linear function of q. This feature is different from the weak superdiffusive regime, i.e., ν(q)=const>1/2, occurring in random shear flows. Strong anomalous diffusion can be generated by nontrivial chaotic dynamics, e.g., Lagrangian motion in 2D time-dependent incompressible velocity fields, 2D symplectic maps and 1D intermittent maps. Typically the function qν(q) is piecewise linear. This is due to two mechanisms: a weak anomalous diffusion for the typical events and a ballistic transport for the rare excursions. In order to have strong anomalous diffusion one needs a violation of the hypothesis of the central limit theorem, this happens only in a very narrow region of the control parameters space. In the presence of strong anomalous diffusion one does not have a unique exponent and therefore one has the failure of the usual scaling P(x,t)=t−νF(x/tν) of the probability density. This implies that the effective equation at large scale and long time for P(x,t), obeys neither the usual Fick equation nor other linear equations involving temporal and/or spatial fractional derivatives.

[1]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[2]  Michael A. Lieberman,et al.  Diffusion in two-dimensional mappings , 1988 .

[3]  Blumen,et al.  Enhanced diffusion in random velocity fields. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[4]  G. Uhlenbeck,et al.  Studies in statistical mechanics , 1962 .

[5]  Angelo Vulpiani,et al.  Lagrangian chaos: Transport, mixing and diffusion in fluids , 1991 .

[6]  G. Taylor Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  Y. Ichikawa,et al.  Stochastic diffusion in the standard map , 1986 .

[8]  Andrew J. Majda,et al.  Monte Carlo methods for turbulent tracers with long range and fractal random velocity fields. , 1997, Chaos.

[9]  G. Matheron,et al.  Is transport in porous media always diffusive? A counterexample , 1980 .

[10]  J. H. Misguich,et al.  Motion in a stochastic layer described by symbolic dynamics. , 1998, Chaos.

[11]  Guido Boffetta,et al.  MIMICKING A TURBULENT SIGNAL : SEQUENTIAL MULTIAFFINE PROCESSES , 1997, chao-dyn/9711006.

[12]  G. Parisi,et al.  A Theory of Stochastic Resonance in Climatic Change , 1983 .

[13]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[14]  Geoffrey Ingram Taylor,et al.  Diffusion by Continuous Movements , 1922 .

[15]  Fogedby Lévy flights in random environments. , 1994, Physical review letters.

[16]  A. Crisanti,et al.  Eddy diffusivities in scalar transport , 1995 .

[17]  R. Kraichnan,et al.  Anomalous scaling of a randomly advected passive scalar. , 1994, Physical review letters.

[18]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[19]  Roberto Benzi,et al.  A random process for the construction of multiaffine fields , 1993 .

[20]  R. M. Clever,et al.  Transition to time-dependent convection , 1974, Journal of Fluid Mechanics.

[21]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[22]  Eric R. Weeks,et al.  Chaotic advection in a two-dimensional flow: Le´vy flights and anomalous diffusion , 1994 .

[23]  P. Lebœuf,et al.  Normal and anomalous diffusion in a deterministic area-preserving map , 1998 .

[24]  Heinz Horner,et al.  Long time tail correlations in discrete chaotic dynamics , 1985 .

[25]  Jeferson Jacob Arenzon,et al.  A multineuron interaction model for neural networks , 1992 .

[26]  Sidney Redner,et al.  Superdiffusion in random velocity fields. , 1990, Physical review letters.

[27]  Avellaneda,et al.  Stieltjes integral representation of effective diffusivities in time-dependent flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  H. K. Moffatt Transport effects associated with turbulence with particular attention to the influence of helicity , 1983 .

[29]  Denis Bernard,et al.  Slow Modes in Passive Advection , 1998 .

[30]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[31]  J. Rogers Chaos , 1876 .

[32]  A. A. Chernikov,et al.  Lagrangian turbulence in nonstationary 2-D flows. , 1991, Chaos.

[33]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[34]  Andrea Mazzino,et al.  Resonant enhanced diffusion in time dependent flow , 1998, chao-dyn/9804003.

[35]  Stevens,et al.  Self-similar transport in incomplete chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Jensen,et al.  Multidiffusion in critical dynamics of strings and membranes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  Diego del-Castillo-Negrete,et al.  Asymmetric transport and non-Gaussian statistics of passive scalars in vortices in shear , 1998 .

[38]  Pierluigi Veltri,et al.  Anomalous diffusion and Lévy random walk of magnetic field lines in three dimensional turbulence , 1995 .

[39]  D. Escande,et al.  NONSTANDARD DIFFUSION PROPERTIES OF THE STANDARD MAP , 1998 .

[40]  Andrew J. Majda,et al.  Superdiffusion in nearly stratified flows , 1992 .

[41]  Andrew J. Majda,et al.  An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows , 1991 .

[42]  Solomon,et al.  Chaotic particle transport in time-dependent Rayleigh-Bénard convection. , 1988, Physical review. A, General physics.

[43]  Geisel,et al.  Accelerated diffusion in Josephson junctions and related chaotic systems. , 1985, Physical review letters.

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  U. Frisch,et al.  Intermittency in Passive Scalar Advection , 1998, cond-mat/9802192.

[47]  Pikovsky Statistical properties of dynamically generated anomalous diffusion. , 1991, Physical review. A, Atomic, molecular, and optical physics.