Plasma-controlled metal catalyst saturation and the initial stage of carbon nanostructure array growth

The kinetics of the nucleation and growth of carbon nanotube and nanocone arrays on Ni catalyst nanoparticles on a silicon surface exposed to a low-temperature plasma are investigated numerically, using a complex model that includes surface diffusion and ion motion equations. It is found that the degree of ionization of the carbon flux strongly affects the kinetics of nanotube and nanocone nucleation on partially saturated catalyst patterns. The use of highly ionized carbon flux allows formation of a nanotube array with a very narrow height distribution of half-width 7 nm. Similar results are obtained for carbon nanocone arrays, with an even narrower height distribution, using a highly ionized carbon flux. As the deposition time increases, nanostructure arrays develop without widening the height distribution when the flux ionization degree is high, in contrast to the fairly broad nanostructure height distributions obtained when the degree of ionization is low.

[1]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[2]  Igor Levchenko,et al.  Growth kinetics of carbon nanowall-like structures in low-temperature plasmas , 2007 .

[3]  Igor Levchenko,et al.  Simulation of island behavior in discontinuous film growth , 2003 .

[4]  Miran Mozetič,et al.  Behaviour of oxygen atoms near the surface of nanostructured Nb2O5 , 2007 .

[5]  K. Ostrikov,et al.  Carbon saturation of arrays of Ni catalyst nanoparticles of different size and pattern uniformity on a silicon substrate , 2008, Nanotechnology.

[6]  Igor Levchenko,et al.  Plasma-assisted self-organized growth of uniform carbon nanocone arrays , 2007 .

[7]  M. Prato,et al.  Scanning probe microscopy and spectroscopy of carbon nanorods grown by self assembly , 2004 .

[8]  Michael Keidar,et al.  Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures , 2005 .

[9]  Charles K. Birdsall,et al.  Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I. Analysis of numerical techniques , 1993 .

[10]  Igor Levchenko,et al.  Control of core-shell structure and elemental composition of binary quantum dots , 2007 .

[11]  Igor Levchenko,et al.  Uniformity of postprocessing of dense nanotube arrays by neutral and ion fluxes , 2006 .

[12]  Michael Keidar,et al.  On the conditions of carbon nanotube growth in the arc discharge , 2004 .

[13]  M. Mozetič,et al.  Long-Range Ordering of Oxygen-Vacancy Planes in α-Fe2O3 Nanowires and Nanobelts , 2008 .

[14]  Anthony B. Murphy,et al.  Plasma-deposited Ge nanoisland films on Si: is Stranski–Krastanow fragmentation unavoidable? , 2008 .

[15]  H. Sugai,et al.  Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions , 2001 .

[16]  J. Gonzalo,et al.  Ion concentrations in plasmas produced from 193 nm excimer laser irradiation of LiNbO3 in vacuum and gas atmospheres , 2003 .

[17]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[18]  Kostya Ostrikov,et al.  Plasma-aided nanofabrication: where is the cutting edge? , 2007 .

[19]  J. M. Rojo,et al.  Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors , 2005 .

[20]  N. A. Azarenkov,et al.  Inductively coupled Ar/CH₄/H₂plasmas for low-temperature deposition of ordered carbon nanostructures , 2004 .

[21]  Alexander Star,et al.  Short-channel effects in contact-passivated nanotube chemical sensors , 2003 .

[22]  R. P. Keatch,et al.  Book reviewPrinciples of plasma discharges and material processing: M.A. Lieberman and A.J. Lichtenberg, John Wiley, New York, 1994, 572 pp , 1996 .

[23]  H. Rau,et al.  Description of microwave discharges in hydrogen , 1993 .

[24]  K. Ostrikov,et al.  Nanoparticle manipulation in the near-substrate areas of low-temperature, high-density rf plasmas , 2005 .

[25]  Cheong Hoong Diong,et al.  RF plasma sputtering deposition of hydroxyapatite bioceramics : synthesis, performance, and biocompatibility , 2005 .

[26]  Miran Mozetic,et al.  Nanowire sensor response to reactive gas environment , 2008 .

[27]  S. Xu,et al.  Power transfer and mode transitions in low-frequency inductively coupled plasmas , 2000 .

[28]  J. H. Whealton,et al.  Field emission from isolated individual vertically aligned carbon nanocones , 2002 .

[29]  M. Mozetič,et al.  Catalytic probes with nanostructured surface for gas/discharge diagnostics: a study of a probe signal behaviour , 2008 .

[30]  Michael Keidar,et al.  2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field , 1996 .

[31]  Kostya Ostrikov,et al.  Synthesis of functional nanoassemblies in reactive plasmas , 2006 .

[32]  Michael Keidar,et al.  Deterministic nanoassembly: Neutral or plasma route? , 2006 .

[33]  M Keidar,et al.  Modeling of the anodic arc discharge and conditions for single-wall carbon nanotube growth. , 2006, Journal of nanoscience and nanotechnology.

[34]  Igor Levchenko,et al.  Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays , 2008 .

[35]  Y. Suda,et al.  Predicting the amount of carbon in carbon nanotubes grown by CH4 rf plasmas , 2006 .

[36]  M. Keidar Anodic plasma in Hall thrusters , 2008 .

[37]  Igor Levchenko,et al.  Nanostructures of various dimensionalities from plasma and neutral fluxes , 2007 .