Rare genetic coding variants associated with human longevity and protection against age-related diseases

[1]  Alexander E. Lopez,et al.  Exome sequencing and characterization of 49,960 individuals in the UK Biobank , 2020, Nature.

[2]  Shayne D. Wierbowski,et al.  Genetics of extreme human longevity to guide drug discovery for healthy ageing , 2020, Nature Metabolism.

[3]  E. Eichler,et al.  Evolution of a Human-Specific Tandem Repeat Associated with ALS. , 2020, American journal of human genetics.

[4]  G. Mills,et al.  Comprehensive assessment of computational algorithms in predicting cancer driver mutations , 2020, Genome Biology.

[5]  D. Melzer,et al.  The genetics of human ageing , 2019, Nature Reviews Genetics.

[6]  V. Gladyshev,et al.  Germline burden of rare damaging variants negatively affects human healthspan and lifespan , 2019, bioRxiv.

[7]  Kenny Q. Ye,et al.  A meta-analysis of genome-wide association studies identifies multiple longevity genes , 2019, Nature Communications.

[8]  N. Tolwinski,et al.  WNT Signaling in Disease , 2019, Cells.

[9]  Shing Wan Choi,et al.  PRSice-2: Polygenic Risk Score software for biobank-scale data , 2019, GigaScience.

[10]  P. Kapahi,et al.  From discoveries in ageing research to therapeutics for healthy ageing , 2019, Nature.

[11]  Broad Genomics Platform,et al.  Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls , 2019 .

[12]  E. Palomer,et al.  Wnt Signaling Deregulation in the Aging and Alzheimer’s Brain , 2019, Front. Cell. Neurosci..

[13]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[14]  J. Fafián-Labora,et al.  FASN activity is important for the initial stages of the induction of senescence , 2019, Cell Death & Disease.

[15]  Timothy J. Hohman,et al.  Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk , 2019, Nature Genetics.

[16]  Gregory M. Cooper,et al.  CADD: predicting the deleteriousness of variants throughout the human genome , 2018, Nucleic Acids Res..

[17]  P. Visscher,et al.  Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances , 2019, eLife.

[18]  Brianne A. Kent,et al.  Whole Exome Sequencing of an Exceptional Longevity Cohort. , 2019, The journals of gerontology. Series A, Biological sciences and medical sciences.

[19]  Anthony J. Payne,et al.  Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps , 2018, Nature Genetics.

[20]  K. D. Sørensen,et al.  Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci , 2018, Nature Genetics.

[21]  S. Batzoglou,et al.  Predicting the clinical impact of human mutation with deep neural networks , 2018, Nature Genetics.

[22]  Andrew D. Johnson,et al.  Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes , 2018, Nature Genetics.

[23]  Zhengdong D. Zhang,et al.  Integrated rare variant-based risk gene prioritization in disease case-control sequencing studies , 2017, PLoS genetics.

[24]  Gary D Bader,et al.  Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.

[25]  M. Fornage,et al.  The Alzheimer's Disease Sequencing Project: Study design and sample selection , 2017, Neurology: Genetics.

[26]  Nick C Fox,et al.  Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease , 2017, Nature Genetics.

[27]  Pierluigi Nicotera,et al.  Replication-Independent Histone Variant H3.3 Controls Animal Lifespan through the Regulation of Pro-longevity Transcriptional Programs , 2016, Cell reports.

[28]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[29]  R. Mahley Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders , 2016, Journal of molecular medicine.

[30]  Ali Torkamani,et al.  Whole-Genome Sequencing of a Healthy Aging Cohort , 2016, Cell.

[31]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[32]  M. Nöthen,et al.  Immunochip analysis identifies association of the RAD50/IL13 region with human longevity , 2016, Aging cell.

[33]  Alexander E. Lopez,et al.  Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease. , 2016, The New England journal of medicine.

[34]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[35]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[36]  J. Hampe,et al.  IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans[S] , 2015, Journal of Lipid Research.

[37]  Jack Euesden,et al.  PRSice: Polygenic Risk Score software , 2014, Bioinform..

[38]  M. Vidal,et al.  Selecting causal genes from genome-wide association studies via functionally coherent subnetworks , 2014, Nature Methods.

[39]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[40]  Toshiko Tanaka,et al.  GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. , 2015, The journals of gerontology. Series A, Biological sciences and medical sciences.

[41]  L. Rodríguez-Mañas,et al.  Exome sequencing of three cases of familial exceptional longevity , 2014, Aging cell.

[42]  Yusuke Nakamura,et al.  Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer , 2014, Nature Genetics.

[43]  G. Abecasis,et al.  Rare-variant association analysis: study designs and statistical tests. , 2014, American journal of human genetics.

[44]  Chava Kimchi-Sarfaty,et al.  Exposing synonymous mutations. , 2014, Trends in genetics : TIG.

[45]  Xuefeng Wang,et al.  Firth logistic regression for rare variant association tests , 2014, Front. Genet..

[46]  Michelle K. Lupton,et al.  The role of ABCA1 gene sequence variants on risk of Alzheimer's disease. , 2013, Journal of Alzheimer's disease : JAD.

[47]  Manuel Serrano,et al.  The Hallmarks of Aging , 2013, Cell.

[48]  P. Rabinovitch,et al.  mTOR is a key modulator of ageing and age-related disease , 2013, Nature.

[49]  Xueyuan Bai,et al.  MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9 , 2013, AGE.

[50]  Itsik Pe'er,et al.  Implications for health and disease in the genetic signature of the Ashkenazi Jewish population , 2012, Genome Biology.

[51]  A. Uitterlinden,et al.  Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways , 2011, AGE.

[52]  Xihong Lin,et al.  Rare-variant association testing for sequencing data with the sequence kernel association test. , 2011, American journal of human genetics.

[53]  Dajiang J Liu,et al.  Replication strategies for rare variant complex trait association studies via next-generation sequencing. , 2010, American journal of human genetics.

[54]  C. Kenyon The genetics of ageing , 2010, Nature.

[55]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[56]  Matthias Platzer,et al.  High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research , 2009, Genome Biology.

[57]  D. Oakes,et al.  Survival Methods: Additional Topics , 2008, Circulation.

[58]  W. Birchmeier,et al.  Wnt signalling and its impact on development and cancer , 2008, Nature Reviews Cancer.

[59]  J. Thaden,et al.  Remarkable longevity and stress resistance of nematode PI3K‐null mutants , 2008, Aging cell.

[60]  V. Bohr,et al.  Human premature aging, DNA repair and RecQ helicases , 2007, Nucleic acids research.

[61]  C. Kuo,et al.  Augmented Wnt Signaling in a Mammalian Model of Accelerated Aging , 2007, Science.

[62]  G. Terstappen,et al.  Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells , 2006, Journal of neurochemistry.

[63]  Kaare Christensen,et al.  The quest for genetic determinants of human longevity: challenges and insights , 2006, Nature Reviews Genetics.

[64]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Claudio Franceschi,et al.  What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment? , 2005, Mechanisms of Ageing and Development.

[66]  T. Kirkwood,et al.  Understanding the Odd Science of Aging , 2005, Cell.

[67]  James W. Vaupel,et al.  The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870–1900 , 1996, Human Genetics.

[68]  J. Vijg,et al.  Genetics of longevity and aging. , 2005, Annual review of medicine.

[69]  Martin Holzenberger,et al.  IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice , 2003, Nature.

[70]  C. Finch,et al.  Ageing: The old worm turns more slowly , 2002, Nature.

[71]  Berrit C Stroehla,et al.  Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. , 2002, American journal of epidemiology.

[72]  M. Tatar,et al.  A Mutant Drosophila Insulin Receptor Homolog That Extends Life-Span and Impairs Neuroendocrine Function , 2001, Science.

[73]  E. Hafen,et al.  Extension of Life-Span by Loss of CHICO, a Drosophila Insulin Receptor Substrate Protein , 2001, Science.

[74]  L. Kruglyak,et al.  Siblings of centenarians live longer , 1998, The Lancet.

[75]  C. Kenyon,et al.  A C. elegans mutant that lives twice as long as wild type , 1993, Nature.