Drosophila neuroblasts: a model for stem cell biology

Drosophila neuroblasts, the stem cells of the developing fly brain, have emerged as a key model system for neural stem cell biology and have provided key insights into the mechanisms underlying asymmetric cell division and tumor formation. More recently, they have also been used to understand how neural progenitors can generate different neuronal subtypes over time, how their cell cycle entry and exit are coordinated with development, and how proliferation in the brain is spared from the growth restrictions that occur in other organs upon starvation. In this Primer, we describe the biology of Drosophila neuroblasts and highlight the most recent advances made using neuroblasts as a model system.

[1]  H. Nakagoshi,et al.  Asymmetric segregation of the homeodomain protein Prospero duringDrosophila development , 1995, Nature.

[2]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[3]  Xavier Morin,et al.  Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium , 2007, Nature Neuroscience.

[4]  H. Steller,et al.  Genetic control of programmed cell death in Drosophila. , 1994, Science.

[5]  Frank Hirth,et al.  The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila , 2006, Development.

[6]  A. Gould,et al.  Fat cells reactivate quiescent neuroblasts via TOR and glial Insulin relays in Drosophila , 2011, Nature.

[7]  Takashi Nishimura,et al.  Linking Cell Cycle to Asymmetric Division: Aurora-A Phosphorylates the Par Complex to Regulate Numb Localization , 2008, Cell.

[8]  E. Matunis,et al.  Control of Stem Cell Self-Renewal in Drosophila Spermatogenesis by JAK-STAT Signaling , 2001, Science.

[9]  A. Kriegstein,et al.  Orienting Fate: Spatial Regulation of Neurogenic Divisions , 2011, Neuron.

[10]  X. Morin,et al.  Analysis of partner of inscuteable, a Novel Player of Drosophila Asymmetric Divisions, Reveals Two Distinct Steps in Inscuteable Apical Localization , 2000, Cell.

[11]  B. Edgar,et al.  The Drosophila melanogaster gene brain tumor negatively regulates cell growth and ribosomal RNA synthesis. , 2002, Development.

[12]  Michael D. Cleary,et al.  Drosophila Polycomb complexes restrict neuroblast competence to generate motoneurons , 2012, Development.

[13]  L. Couturier,et al.  Endocytosis by Numb breaks Notch symmetry at cytokinesis , 2012, Nature Cell Biology.

[14]  Chris Q. Doe,et al.  Spindle orientation during asymmetric cell division , 2009, Nature Cell Biology.

[15]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[16]  P. Thibault,et al.  aPKC‐mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb , 2007, The EMBO journal.

[17]  Eugene Berezikov,et al.  The TRIM-NHL Protein TRIM32 Activates MicroRNAs and Prevents Self-Renewal in Mouse Neural Progenitors , 2009, Cell.

[18]  P. Gruenwald Chronic Fetal Distress and Placental Insufficiency (Part 1 of 3) , 1963 .

[19]  S. Yoshiura,et al.  Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. , 2012, Developmental cell.

[20]  P. Léopold,et al.  The TOR pathway couples nutrition and developmental timing in Drosophila. , 2008, Developmental cell.

[21]  W. Chia,et al.  Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon , 2007, Nature.

[22]  Omer Ali Bayraktar,et al.  Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex , 2010, Neural Development.

[23]  P. Gruenwald CHRONIC FETAL DISTRESS AND PLACENTAL INSUFFICIENCY. , 1963, Biologia neonatorum. Neo-natal studies.

[24]  J. Skeath,et al.  Genetic control of dorsoventral patterning and neuroblast specification in the Drosophila Central Nervous System. , 2007, The International journal of developmental biology.

[25]  B. Barres,et al.  Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina , 2005, Neuron.

[26]  H. Schatten,et al.  Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein. , 2006, Frontiers in bioscience : a journal and virtual library.

[27]  Cayetano Gonzalez,et al.  Centrosome Dysfunction in Drosophila Neural Stem Cells Causes Tumors that Are Not Due to Genome Instability , 2008, Current Biology.

[28]  A. Brand,et al.  Neural stem cell transcriptional networks highlight genes essential for nervous system development , 2009, The EMBO journal.

[29]  K. White,et al.  Patterns of cell division and cell movement in the formation of the imaginal nervous system in Drosophila melanogaster. , 1978, Developmental biology.

[30]  Anikó Somogyi,et al.  [Changes in cognitive function in patients with diabetes mellitus]. , 2012, Orvosi hetilap.

[31]  T. Hummel,et al.  Glial development in the Drosophila CNS requires concomitant activation of glial and repression of neuronal differentiation genes. , 1997, Development.

[32]  M. Primig,et al.  Transcriptional signature of an adult brain tumor in Drosophila , 2004, BMC Genomics.

[33]  Hans Clevers,et al.  Strategies for Homeostatic Stem Cell Self-Renewal in Adult Tissues , 2011, Cell.

[34]  Bruce A. Hay,et al.  Inactivation of Both foxo and reaper Promotes Long-Term Adult Neurogenesis in Drosophila , 2010, Current Biology.

[35]  X. Morin,et al.  A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts , 2003, Journal of Cell Science.

[36]  Pierre Vanderhaeghen,et al.  An intrinsic mechanism of corticogenesis from embryonic stem cells , 2008, Nature.

[37]  A. Kriegstein,et al.  Neurogenic radial glia in the outer subventricular zone of human neocortex , 2010, Nature.

[38]  D. Cleveland,et al.  Requirements for NuMA in maintenance and establishment of mammalian spindle poles , 2009, The Journal of cell biology.

[39]  N. Patel,et al.  repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. , 1994, Genes & development.

[40]  C. Rieder,et al.  Greatwall kinase , 2004, The Journal of cell biology.

[41]  Chris Q Doe,et al.  Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells , 2008, Developmental neurobiology.

[42]  M. Roldán,et al.  Spindle alignment is achieved without rotation after the first cell cycle in Drosophila embryonic neuroblasts , 2009, Development.

[43]  Juergen A. Knoblich,et al.  Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi , 2011, Cell stem cell.

[44]  S. Cohen,et al.  Regulation of tissue growth through nutrient sensing. , 2009, Annual review of genetics.

[45]  L. Wang,et al.  [Genetic control of programmed cell death]. , 1996, Sheng li ke xue jin zhan [Progress in physiology].

[46]  U. Heberlein,et al.  Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. , 2006, Genes & development.

[47]  P. Driscoll,et al.  Anaplastic Lymphoma Kinase Spares Organ Growth during Nutrient Restriction in Drosophila , 2011, Cell.

[48]  Bret J. Pearson,et al.  Drosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny , 2001, Cell.

[49]  Alisson M. Gontijo,et al.  Imaginal Discs Secrete Insulin-Like Peptide 8 to Mediate Plasticity of Growth and Maturation , 2012, Science.

[50]  Ira Herskowitz,et al.  Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question , 1992, Cell.

[51]  L. Tsai,et al.  G Protein βγ Subunits and AGS3 Control Spindle Orientation and Asymmetric Cell Fate of Cerebral Cortical Progenitors , 2005, Cell.

[52]  Bret J. Pearson,et al.  Regulation of temporal identity transitions in Drosophila neuroblasts. , 2005, Developmental cell.

[53]  J. Cerón,et al.  A primary cell culture of Drosophila postembryonic larval neuroblasts to study cell cycle and asymmetric division. , 2006, European journal of cell biology.

[54]  K. Golden,et al.  dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. , 2010, Developmental cell.

[55]  Christian Klämbt,et al.  The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS , 1994, Cell.

[56]  S. Anderson,et al.  Clonal Production and Organization of Inhibitory Interneurons in the Neocortex , 2011, Science.

[57]  A. Gould,et al.  Temporal Transcription Factors and Their Targets Schedule the End of Neural Proliferation in Drosophila , 2008, Cell.

[58]  Rachel E Karcavich,et al.  Generating neuronal diversity in the Drosophila central nervous system: A view from the ganglion mother cells , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[59]  S. Shi,et al.  Specific synapses develop preferentially among sister excitatory neurons in the neocortex , 2009, Nature.

[60]  V. Hartenstein,et al.  The embryonic development of the Drosophila visual system , 1993, Cell and Tissue Research.

[61]  A. Brand,et al.  Development and Stem Cells Research Article , 2022 .

[62]  K. Guan,et al.  An emerging role for TOR signaling in mammalian tissue and stem cell physiology , 2011, Development.

[63]  P. Bryant,et al.  What is Drosophila Telling Us About Cancer? , 2004, Cancer Metastasis Review.

[64]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[65]  Ting Xie,et al.  Restricting self-renewal signals within the stem cell niche: multiple levels of control. , 2011, Current opinion in genetics & development.

[66]  T. Shimazaki,et al.  Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development , 2008, Nature Neuroscience.

[67]  A. Shevchenko,et al.  A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila , 2000, Current Biology.

[68]  A. Suzuki,et al.  The PAR-aPKC system: lessons in polarity , 2006, Journal of Cell Science.

[69]  J. Nagle,et al.  Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. , 1998, Genes & development.

[70]  C. Goodman,et al.  Embryonic development of the Drosophila brain , 1995 .

[71]  K. Mechtler,et al.  Asymmetric Segregation of the Tumor Suppressor Brat Regulates Self-Renewal in Drosophila Neural Stem Cells , 2006, Cell.

[72]  Gerald M Rubin,et al.  Using translational enhancers to increase transgene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[73]  J. Knoblich,et al.  Mouse Inscuteable Induces Apical-Basal Spindle Orientation to Facilitate Intermediate Progenitor Generation in the Developing Neocortex , 2011, Neuron.

[74]  E. Caussinus,et al.  Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster , 2005, Nature Genetics.

[75]  C. Gonzalez,et al.  Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. , 2007, Developmental cell.

[76]  R. Wharton,et al.  Drosophila Brain Tumor is a translational repressor. , 2001, Genes & development.

[77]  W. Chia,et al.  Klumpfuss, a putative Drosophila zinc finger transcription factor, acts to differentiate between the identities of two secondary precursor cells within one neuroblast lineage. , 1997, Genes & development.

[78]  E. Gateff Malignant neoplasms of genetic origin in Drosophila melanogaster. , 1978, Science.

[79]  L. Tsai,et al.  G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. , 2005, Cell.

[80]  C. Antoniewski,et al.  Antagonistic Actions of Ecdysone and Insulins Determine Final Size in Drosophila , 2005, Science.

[81]  S. Zipursky,et al.  The Drosophila anachronism locus: A glycoprotein secreted by glia inhibits neuroblast proliferation , 1993, Cell.

[82]  F. Hirth,et al.  A Pulse of the Drosophila Hox Protein Abdominal-A Schedules the End of Neural Proliferation via Neuroblast Apoptosis , 2003, Neuron.

[83]  T. Hosoya,et al.  Glial cells missing: A binary switch between neuronal and glial determination in drosophila , 1995, Cell.

[84]  A. Kriegstein,et al.  A new subtype of progenitor cell in the mouse embryonic neocortex , 2011, Nature Neuroscience.

[85]  A. Baonza,et al.  The bHLH factor deadpan is a direct target of Notch signaling and regulates neuroblast self-renewal in Drosophila. , 2011, Developmental biology.

[86]  H. Harris Tumour suppression: Putting on the brakes , 2004, Nature.

[87]  C. Delidakis,et al.  bHLH-O proteins are crucial for Drosophila neuroblast self-renewal and mediate Notch-induced overproliferation , 2012, Development.

[88]  Su Guo,et al.  Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia , 2012, Neuron.

[89]  F. Matsuzaki,et al.  Oblique Radial Glial Divisions in the Developing Mouse Neocortex Induce Self-Renewing Progenitors outside the Germinal Zone That Resemble Primate Outer Subventricular Zone Progenitors , 2011, The Journal of Neuroscience.

[90]  G. Technau,et al.  The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. , 1991, Development.

[91]  Y. Jan,et al.  Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains , 2011, Proceedings of the National Academy of Sciences.

[92]  R. Plasterk,et al.  The diverse functions of microRNAs in animal development and disease. , 2006, Developmental cell.

[93]  T. Gettys,et al.  Activator of G‐protein Signaling 3 null mice: unexpected alterations in metabolic and cardiovascular function , 2008, Endocrinology.

[94]  V. Hartenstein Morphological diversity and development of glia in Drosophila , 2011, Glia.

[95]  P. Seglen,et al.  Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. , 2004, Developmental cell.

[96]  M. Peifer,et al.  A role for a novel centrosome cycle in asymmetric cell division , 2007, The Journal of cell biology.

[97]  G. Technau,et al.  Molecular markers for identified neuroblasts in the developing brain of Drosophila , 2003, Development.

[98]  M. Götz,et al.  The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. , 2005, Current topics in developmental biology.

[99]  Eri Hasegawa,et al.  Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors , 2008, Development.

[100]  Y. Hotta,et al.  Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. , 1992, Developmental biology.

[101]  J. Knoblich,et al.  Heterotrimeric G Proteins Direct Two Modes of Asymmetric Cell Division in the Drosophila Nervous System , 2001, Cell.

[102]  A. Brand,et al.  Nutrition-Responsive Glia Control Exit of Neural Stem Cells from Quiescence , 2010, Cell.

[103]  Karl Mechtler,et al.  Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage , 2008, Nature.

[104]  S. Datta Activation of neuroblast proliferation in explant culture of the Drosophila larval CNS , 1999, Brain Research.

[105]  D. Andersen,et al.  Secreted Peptide Dilp8 Coordinates Drosophila Tissue Growth with Developmental Timing , 2012, Science.

[106]  B. Leber,et al.  Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. , 2009, Blood.

[107]  A. Carmena Signaling networks during development: the case of asymmetric cell division in the Drosophila nervous system. , 2008, Developmental biology.

[108]  Pinchas Cohen,et al.  The role of the insulin-like growth factor system in prenatal growth. , 2005, Molecular genetics and metabolism.

[109]  M. Scott,et al.  The prospero gene specifies cell fates in the Drosophila central nervous system. , 1991, Cell.

[110]  J. Nambu,et al.  The Drosophila fish-hook gene encodes a HMG domain protein essential for segmentation and CNS development. , 1996, Development.

[111]  David M. Umulis,et al.  Brat Promotes Stem Cell Differentiation via Control of a Bistable Switch that Restricts BMP Signaling , 2011, Developmental cell.

[112]  M. Bate,et al.  Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. , 1988, Developmental biology.

[113]  V. Hartenstein,et al.  Embryonic development of the Drosophila brain. II. Pattern of glial cells , 1998, The Journal of comparative neurology.

[114]  Y. Jan,et al.  Miranda Is Required for the Asymmetric Localization of Prospero during Mitosis in Drosophila , 1997, Cell.

[115]  Tony D. Southall,et al.  Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. , 2006, Developmental cell.

[116]  S. Bray,et al.  Regulation of post-embryonic neuroblasts by Drosophila Grainyhead , 2005, Mechanisms of Development.

[117]  A. Gould,et al.  Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts , 2005, Development.

[118]  H. Schneiderman,et al.  Developmental capacities of benign and malignant neoplasms ofDrosophila , 1974, Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen.

[119]  S. Artavanis-Tsakonas,et al.  Choosing a cell fate: a view from the Notch locus. , 1991, Trends in genetics : TIG.

[120]  F. Schweisguth,et al.  Regulation of Notch Signaling Activity , 2004, Current Biology.

[121]  J. Knoblich,et al.  Mechanisms of Asymmetric Stem Cell Division , 2008, Cell.

[122]  John B. Thomas,et al.  Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[123]  J. Urban,et al.  Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. , 2002, Development.

[124]  J. Skeath,et al.  Genetic control of Drosophila nerve cord development , 2003, Current Opinion in Neurobiology.

[125]  Chris Q Doe,et al.  Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe , 2007, Neural Development.

[126]  C. Doe,et al.  Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. , 2006, Developmental cell.

[127]  C. Doe,et al.  Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions , 1997, Nature.

[128]  Y. Jan,et al.  Partner of Numb Colocalizes with Numb during Mitosis and Directs Numb Asymmetric Localization in Drosophila Neural and Muscle Progenitors , 1998, Cell.

[129]  K. Wallace,et al.  The pan‐neural bHLH proteins DEADPAN and ASENSE regulate mitotic activity and cdk inhibitor dacapo expression in the Drosophila larval optic lobes , 2000, Genesis.

[130]  M. Freeman,et al.  Glial cell biology in Drosophila and vertebrates , 2006, Trends in Neurosciences.

[131]  Richard D Fetter,et al.  glial cells missing: a genetic switch that controls glial versus neuronal fate , 1995, Cell.

[132]  Masataka Okabe,et al.  seven-up Controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. , 2005, Developmental cell.

[133]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[134]  S. Elgin,et al.  Chromatin organization and transcriptional control of gene expression in Drosophila. , 2000, Gene.

[135]  T. Pierfelice,et al.  Notch in the Vertebrate Nervous System: An Old Dog with New Tricks , 2011, Neuron.

[136]  Sean J Morrison,et al.  Cancer stem cells: impact, heterogeneity, and uncertainty. , 2012, Cancer cell.

[137]  S. Bowman,et al.  The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. , 2008, Developmental cell.

[138]  Natalie A. Kuhlman,et al.  Linking , 1986, The Fairchild Books Dictionary of Fashion.

[139]  Hiroshi Kiyonari,et al.  Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis , 2008, Nature Cell Biology.

[140]  H. Reichert Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. , 2011, Results and problems in cell differentiation.

[141]  J. Fish,et al.  OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling , 2010, Nature Neuroscience.

[142]  Chris Q Doe,et al.  Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. , 2006, Genes & development.

[143]  Bret J. Pearson,et al.  Regulation of neuroblast competence in Drosophila , 2003, Nature.

[144]  A. Shearn,et al.  Mutations in the β-propeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain , 2000, Oncogene.

[145]  K. Prehoda,et al.  aPKC Phosphorylates Miranda to Polarize Fate Determinants during Neuroblast Asymmetric Cell Division , 2009, Current Biology.

[146]  T. Dick,et al.  The role of a Drosophila POU homeo domain gene in the specification of neural precursor cell identity in the developing embryonic central nervous system. , 1993, Genes & development.

[147]  W. Chia,et al.  Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro. , 2002, Development.

[148]  B. Lu,et al.  Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila. , 2011, Genes & development.

[149]  H. Reichert,et al.  Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development , 2008, Neural Development.

[150]  T. Brody,et al.  Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. , 2000, Developmental biology.

[151]  E. Gateff,et al.  Tumor suppressor and overgrowth suppressor genes of Drosophila melanogaster: developmental aspects. , 1994, The International journal of developmental biology.

[152]  Heinrich Reichert,et al.  Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain , 2009, Neural Development.