Numerical approach to the parallel gradient operator in tokamak scrape-off layer turbulence simulations and application to the GBS code

This paper presents two discretisation schemes for the parallel gradient operator used in scrape-off layer plasma turbulence simulations. First, a simple model describing the propagation of electrostatic shear-Alfven waves, and retaining the key elements of the parallel dynamics, is used to test the accuracy of the different schemes against analytical predictions. The most promising scheme is then tested in simulations of limited scrape-off layer turbulence with the flux-driven 3D fluid code GBS (Ricci et al., 2012): the new approach is successfully benchmarked against the original parallel gradient discretisation implemented in GBS. Finally, GBS simulations using a radially varying safety profile, which were inapplicable with the original scheme are carried out for the first time: the well-known stabilisation of resistive ballooning modes at negative magnetic shear is recovered. The main conclusion of this paper is that a simple approach to the parallel gradient, namely centred finite differences in the poloidal and toroidal direction, is able to simulate scrape-off layer turbulence provided that a higher resolution and higher convergence order are used.

[1]  J. Drake,et al.  Three‐dimensional fluid simulations of tokamak edge turbulence , 1996 .

[2]  Federico David Halpern,et al.  Boundary conditions for plasma fluid models at the magnetic presheath entrance , 2012 .

[3]  P. Roache Perspective: A Method for Uniform Reporting of Grid Refinement Studies , 1994 .

[4]  A. Thyagaraja,et al.  Numerical simulations of tokamak plasma turbulence and internal transport barriers , 2000 .

[5]  F. Halpern,et al.  Aspect ratio effects on limited scrape-off layer plasma turbulence , 2014 .

[6]  Dirk Reiser,et al.  Impact of large island perturbations on turbulent blob transport in tokamaks , 2007 .

[7]  Sibylle Günter,et al.  Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas , 2007, J. Comput. Phys..

[8]  F. Halpern,et al.  Ideal ballooning modes in the tokamak scrape-off layer , 2013 .

[9]  Bruce D. Scott,et al.  Computation of electromagnetic turbulence and anomalous transport mechanisms in tokamak plasmas , 2003 .

[10]  J. L. V. Lewandowski,et al.  Shear-Alfven Waves in Gyrokinetic Plasmas , 2000 .

[11]  Laurent Villard,et al.  Parallel filtering in global gyrokinetic simulations , 2012, J. Comput. Phys..

[12]  B. Scott Three-Dimensional Computation of Drift Alfven Turbulence , 1997 .

[13]  Choong-Seock Chang,et al.  Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry , 2009 .

[14]  Frank Jenko,et al.  Massively parallel Vlasov simulation of electromagnetic drift-wave turbulence , 2000 .

[15]  Shinji Tokuda,et al.  Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulation , 2009 .

[16]  X. Garbet,et al.  Theoretical understanding of turbulent transport in the SOL , 2003 .

[17]  O E Garcia,et al.  Computations of intermittent transport in scrape-off layer plasmas. , 2004, Physical review letters.

[18]  P. B. Snyder,et al.  BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..

[19]  Sibylle Günter,et al.  Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .

[20]  Federico David Halpern,et al.  Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation , 2012 .

[21]  F. Halpern,et al.  Turbulent regimes in the tokamak scrape-off layer , 2013 .

[22]  Mike Kotschenreuther,et al.  Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities , 1995 .

[23]  Laurent Villard,et al.  A global collisionless PIC code in magnetic coordinates , 2007, Comput. Phys. Commun..

[24]  Bill Scott,et al.  Shifted metric procedure for flux tube treatments of toroidal geometry: Avoiding grid deformation , 2001 .

[25]  Nagiza F. Samatova,et al.  Compressed ion temperature gradient turbulence in diverted tokamak edge , 2009 .

[26]  Paolo Ricci,et al.  Plasma turbulence in the scrape-off layer of tokamak devices , 2013 .

[27]  Volker Naulin Electromagnetic transport components and sheared flows in drift-Alfvén turbulence , 2003 .

[28]  M. Ottaviani,et al.  A flux-coordinate independent field-aligned approach to plasma turbulence simulations , 2013, Comput. Phys. Commun..

[29]  S. Ku,et al.  Pedestal fueling simulations with a coupled kinetic plasma–kinetic neutral transport code , 2013 .

[30]  F. Halpern,et al.  On the electrostatic potential in the scrape-off layer of magnetic confinement devices , 2013 .

[31]  Gregory W. Hammett,et al.  Field‐aligned coordinates for nonlinear simulations of tokamak turbulence , 1995 .

[32]  Virginie Grandgirard,et al.  TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks , 2010, J. Comput. Phys..