Examining Similarity Structure: Multidimensional Scaling and Related Approaches in Neuroimaging

This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis methods.

[1]  M. Ida Gobbini,et al.  Three Virtues of Similarity-based Multivariate Pattern Analysis : An example from the human object vision pathway , 2014 .

[2]  Radoslaw Martin Cichy,et al.  Probing principles of large‐scale object representation: Category preference and location encoding , 2013, Human brain mapping.

[3]  Jing Wang,et al.  Decoding abstract and concrete concept representations based on single‐trial fMRI data , 2013, Human brain mapping.

[4]  Sébastien Hélie,et al.  Brain activity across the development of automatic categorization: A comparison of categorization tasks using multi-voxel pattern analysis , 2013, NeuroImage.

[5]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[6]  Wim Vanduffel,et al.  Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI , 2012, NeuroImage.

[7]  Xi-Nian Zuo,et al.  Generalized RAICAR: Discover homogeneous subject (sub)groups by reproducibility of their intrinsic connectivity networks , 2012, NeuroImage.

[8]  Bernard Mazoyer,et al.  Disentangling the brain networks supporting affective speech comprehension , 2012, NeuroImage.

[9]  Shimon Edelman,et al.  Renewing the respect for similarity , 2012, Front. Comput. Neurosci..

[10]  Marcel Adam Just,et al.  Exploring commonalities across participants in the neural representation of objects , 2012, Human brain mapping.

[11]  James D. Malley,et al.  Using Multivariate Machine Learning Methods and Structural MRI to Classify Childhood Onset Schizophrenia and Healthy Controls , 2012, Front. Psychiatry.

[12]  Hervé Abdi,et al.  Multiple Subject Barycentric Discriminant Analysis (MUSUBADA): How to Assign Scans to Categories without Using Spatial Normalization , 2012, Comput. Math. Methods Medicine.

[13]  Rajeev D. S. Raizada,et al.  What Makes Different People's Representations Alike: Neural Similarity Space Solves the Problem of Across-subject fMRI Decoding , 2012, Journal of Cognitive Neuroscience.

[14]  Hervé Abdi,et al.  Optimizing preprocessing and analysis pipelines for single‐subject fMRI. I. Standard temporal motion and physiological noise correction methods , 2012, Human brain mapping.

[15]  Hervé Abdi,et al.  STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling , 2012 .

[16]  J. S. Guntupalli,et al.  The Representation of Biological Classes in the Human Brain , 2012, The Journal of Neuroscience.

[17]  Johan Wagemans,et al.  RETRACTED: The visual word form area is organized according to orthography , 2012, NeuroImage.

[18]  Jing Wang,et al.  Decoding the neural representation of affective states , 2012, NeuroImage.

[19]  Michael S. Pratte,et al.  Decoding patterns of human brain activity. , 2012, Annual review of psychology.

[20]  Raghu Machiraju,et al.  Spatio-temporal models of mental processes from fMRI , 2011, NeuroImage.

[21]  Naokazu Goda,et al.  Transformation from image-based to perceptual representation of materials along the human ventral visual pathway , 2011, NeuroImage.

[22]  Sidney R. Lehky,et al.  Frontiers in Computational Neuroscience Computational Neuroscience , 2022 .

[23]  Tom M. Mitchell,et al.  Commonality of neural representations of words and pictures , 2011, NeuroImage.

[24]  Johan Wagemans,et al.  Distributed subordinate specificity for bodies, faces, and buildings in human ventral visual cortex , 2010, NeuroImage.

[25]  Tom Michael Mitchell,et al.  A Neurosemantic Theory of Concrete Noun Representation Based on the Underlying Brain Codes , 2010, PloS one.

[26]  Jonathan D. Cohen,et al.  Reproducibility Distinguishes Conscious from Nonconscious Neural Representations , 2010, Science.

[27]  G. Aguirre,et al.  Different spatial scales of shape similarity representation in lateral and ventral LOC. , 2009, Cerebral cortex.

[28]  Kurt Hornik,et al.  Generalized and Customizable Sets in R , 2009 .

[29]  Scott Makeig,et al.  High-frequency Broadband Modulations of Electroencephalographic Spectra , 2009, Front. Hum. Neurosci..

[30]  N. Kriegeskorte,et al.  Revealing representational content with pattern-information fMRI--an introductory guide. , 2009, Social cognitive and affective neuroscience.

[31]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[32]  Hervé Abdi,et al.  How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the Bootstrap and 3-way multidimensional scaling (DISTATIS) , 2009, NeuroImage.

[33]  Kâmil Uğurbil,et al.  Cerebral cortical mechanisms of copying geometrical shapes: a multidimensional scaling analysis of fMRI patterns of activation , 2009, Experimental Brain Research.

[34]  Sharon L. Thompson-Schill,et al.  Predicting judged similarity of natural categories from their neural representations , 2009, Neuropsychologia.

[35]  Hans-Friedrich Köhn,et al.  Cluster analysis: A toolbox for MATLAB. , 2009 .

[36]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[37]  Hyunsu Bae,et al.  Evidence Based Complementary and Alternative Medicine , 2008, Evidence-based complementary and alternative medicine : eCAM.

[38]  Johan Wagemans,et al.  Perceived Shape Similarity among Unfamiliar Objects and the Organization of the Human Object Vision Pathway , 2008, The Journal of Neuroscience.

[39]  N. Kanwisher,et al.  Multivariate Patterns in Object-Selective Cortex Dissociate Perceptual and Physical Shape Similarity , 2008, PLoS biology.

[40]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[41]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[42]  A. Ishai,et al.  Recollection- and Familiarity-Based Decisions Reflect Memory Strength , 2008, Frontiers in systems neuroscience.

[43]  Patrick Mair,et al.  Multidimensional Scaling Using Majorization: SMACOF in R , 2008 .

[44]  Tom Michael Mitchell,et al.  From the SelectedWorks of Marcel Adam Just 2008 Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings , 2016 .

[45]  Alice J. O'Toole,et al.  Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification Approaches to the Analysis of Functional Neuroimaging Data , 2007, Journal of Cognitive Neuroscience.

[46]  A. Etkin,et al.  Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. , 2007, The American journal of psychiatry.

[47]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[48]  Geoffrey Karl Aguirre,et al.  Continuous carry-over designs for fMRI , 2007, NeuroImage.

[49]  Stéphane Dray,et al.  The ade4 Package-II: Two-table and K-table Methods , 2007 .

[50]  S. R. Lehky,et al.  Comparison of shape encoding in primate dorsal and ventral visual pathways. , 2007, Journal of neurophysiology.

[51]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[52]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[53]  Tutut Herawan,et al.  Computational and mathematical methods in medicine. , 2006, Computational and mathematical methods in medicine.

[54]  Vaidehi S. Natu,et al.  Category-Specific Cortical Activity Precedes Retrieval During Memory Search , 2005, Science.

[55]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[56]  Kenneth G. Manton,et al.  Cluster Analysis: Overview , 2005 .

[57]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[58]  E. Bullmore,et al.  Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome , 2005, Biological Psychiatry.

[59]  Alice J. O'Toole,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[60]  Stephen José Hanson,et al.  Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? , 2004, NeuroImage.

[61]  Jean-Baptiste Poline,et al.  Group analysis in functional neuroimaging: selecting subjects using similarity measures , 2003, NeuroImage.

[62]  D. E Welchew,et al.  Multidimensional Scaling of Integrated Neurocognitive Function and Schizophrenia as a Disconnexion Disorder , 2002, NeuroImage.

[63]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[64]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[65]  Garrison W. Cottrell,et al.  Content and cluster analysis: Assessing representational similarity in neural systems , 2000 .

[66]  S. Edelman,et al.  Toward direct visualization of the internal shape representation space by fMRI , 1998, Psychobiology.

[67]  S Edelman,et al.  Representation is representation of similarities , 1996, Behavioral and Brain Sciences.

[68]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[69]  P. Groenen,et al.  The tunneling method for global optimization in multidimensional scaling , 1996 .

[70]  Karl J. Friston,et al.  Functional topography: multidimensional scaling and functional connectivity in the brain. , 1996, Cerebral cortex.

[71]  Peter Andersen,et al.  Quantitative relations between parietal activation and performance in mental rotation , 1996, Neuroreport.

[72]  G. De Soete,et al.  Clustering and Classification , 2019, Data-Driven Science and Engineering.

[73]  Robert Sabatier,et al.  The ACT (STATIS method) , 1994 .

[74]  Douglas H. Wedell,et al.  Context Effects on Similarity Judgments of Multidimensional Stimuli: Inferring the Structure of the Emotion Space , 1994 .

[75]  L. Hubert,et al.  Multidimensional scaling in the city-block metric: A combinatorial approach , 1992 .

[76]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[77]  R. Nosofsky Similarity Scaling and Cognitive Process Models , 1992 .

[78]  M. Hasselmo,et al.  The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey , 1989, Behavioural Brain Research.

[79]  Edward J. Shoben,et al.  Applications of Multidimensional Scaling in Cognitive Psychology , 1983 .

[80]  J. H. Steiger Tests for comparing elements of a correlation matrix. , 1980 .

[81]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[82]  P. Schönemann,et al.  Fitting one matrix to another under choice of a central dilation and a rigid motion , 1970 .

[83]  R. Shepard Attention and the metric structure of the stimulus space. , 1964 .

[84]  L. Tucker,et al.  An individual differences model for multidimensional scaling , 1963 .

[85]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[86]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .