A review on phase change materials integrated in building walls

The present paper is the first comprehensive review of the integration of phase change materials in building walls. Many considerations are discussed in this paper including physical considerations about building envelope and phase change material, phase change material integration and thermophysical property measurements and various experimental and numerical studies concerning the integration. Even if the integrated phase change material have a good potential for reducing energy demand, further investigations are needed to really assess their use.

[1]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[2]  Mohammed M. Farid,et al.  A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials , 2021, Thermal Energy Storage with Phase Change Materials.

[3]  Joseph Virgone,et al.  Optimization of a Phase Change Material Wallboard for Building Use , 2008 .

[4]  Mario A. Medina,et al.  Development of a thermally enhanced frame wall with phase‐change materials for on‐peak air conditioning demand reduction and energy savings in residential buildings , 2005 .

[5]  Uroš Stritih,et al.  Heat transfer enhancement in latent heat thermal storage system for buildings , 2003 .

[6]  Arild Gustavsen,et al.  Phase Change Materials for Building Applications: A State-of-the-Art Review , 2010 .

[7]  Robert F. Boehm,et al.  Modeling of phase change material peak load shifting , 2007 .

[8]  Hazim B. Awbi,et al.  Performance of phase change material boards under natural convection , 2009 .

[9]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[10]  K. Peippo,et al.  A multicomponent PCM wall optimized for passive solar heating , 1991 .

[11]  M. Hadjieva,et al.  Composite salt-hydrate concrete system for building energy storage , 2000 .

[12]  S. Mozhevelov,et al.  Temperature Moderation in a Real-Size Room by PCM-Based Units , 2006 .

[13]  M. Hawlader,et al.  Microencapsulated PCM thermal-energy storage system , 2003 .

[14]  A. W. Date A strong enthalpy formulation for the Stefan problem , 1991 .

[15]  S. Medved,et al.  Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres , 2005 .

[16]  A. Bejan,et al.  Thermal Energy Storage: Systems and Applications , 2002 .

[17]  E. Ghanbari,et al.  Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard , 1991 .

[18]  Yi Jiang,et al.  Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings , 2006 .

[19]  Beat Lehmann,et al.  Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings , 2004 .

[20]  F. Kuznik,et al.  Experimental assessment of a phase change material for wall building use , 2009 .

[21]  Zhu Neng,et al.  Experimental study and evaluation of latent heat storage in phase change materials wallboards , 2007 .

[22]  A. Sari,et al.  Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage , 2008 .

[23]  Zhang Yinping,et al.  A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials , 1999 .

[24]  L. E. Goodrich,et al.  Efficient numerical technique for one-dimensional thermal problems with phase change , 1978 .

[25]  Esam M. Alawadhi,et al.  Thermal analysis of a building brick containing phase change material , 2008 .

[26]  K Darkwa,et al.  Simulation of an integrated PCM–wallboard system , 2003 .

[27]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[28]  K Darkwa,et al.  Thermal Analysis of Composite Phase Change Drywall Systems , 2005 .

[29]  Joseph Virgone,et al.  Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation , 2008 .

[30]  Zhengguo Zhang,et al.  A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials , 2006 .

[31]  Roland W. Lewis,et al.  Finite element solution of non‐linear heat conduction problems with special reference to phase change , 1974 .

[32]  M. Cross,et al.  Accurate solutions of moving boundary problems using the enthalpy method , 1981 .

[33]  Luisa F. Cabeza,et al.  Experimental Study of PCM Inclusion in Different Building Envelopes , 2009 .

[34]  José Luis Valverde,et al.  Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio , 2010 .

[35]  Na Zhu,et al.  Dynamic characteristics and energy performance of buildings using phase change materials: A review , 2009 .

[36]  R. Velraj,et al.  Phase change material-based building architecture for thermal management in residential and commercial establishments , 2008 .

[37]  D. Feldman,et al.  Full scale thermal testing of latent heat storage in wallboard , 1996 .

[38]  Luisa F. Cabeza,et al.  Use of microencapsulated PCM in concrete walls for energy savings , 2007 .

[39]  Haifeng Guo,et al.  A new kind of phase change material (PCM) for energy-storing wallboard , 2008 .

[40]  Dariusz Heim,et al.  Isothermal storage of solar energy in building construction , 2010 .

[41]  Hui Li,et al.  Preparation and characteristics of n-nonadecane/cement composites as thermal energy storage materials in buildings , 2010 .

[42]  Andreas K. Athienitis,et al.  Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage , 1997 .

[43]  Min Xiao,et al.  Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity , 2002 .

[44]  K Darkwa,et al.  Quasi-isotropic laminated phase-change material system , 2007 .

[45]  L. Cabeza,et al.  Free-cooling of buildings with phase change materials , 2004 .

[46]  Kamil Kaygusuz,et al.  Capric acid and stearic acid mixture impregnated with gypsum wallboard for low‐temperature latent heat thermal energy storage , 2008 .

[47]  Oliver Kornadt,et al.  Temperature reduction due to the application of phase change materials , 2008 .

[48]  K Darkwa,et al.  Dynamics of energy storage in phase change drywall systems , 2005 .

[49]  S. C. Kaushik,et al.  Thermal performance of a non-air-conditioned building with PCCM thermal storage wall☆ , 1985 .

[50]  Yi Jiang,et al.  Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard , 2008 .

[51]  D. Feldman,et al.  DSC analysis for the evaluation of an energy storing wallboard , 1996 .

[52]  Xin Wang,et al.  Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation , 2009 .

[53]  J. Fricke,et al.  PCM-facade-panel for daylighting and room heating , 2005 .

[54]  V. V. Tyagi,et al.  PCM thermal storage in buildings: A state of art , 2007 .

[55]  Minwu Yao,et al.  AN ALTERNATIVE FORMULATION OF THE APPARENT HEAT CAPACITY METHOD FOR PHASE-CHANGE PROBLEMS , 1993 .

[56]  Meng Zhang,et al.  On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs) , 2008 .

[57]  André Bontemps,et al.  Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material , 2006 .

[58]  André Bontemps,et al.  Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material , 2006 .

[59]  Halime Paksoy,et al.  Phase Change Material Sandwich Panels for Managing Solar Gain in Buildings , 2009 .

[60]  X. Tao,et al.  Crystallization and prevention of supercooling of microencapsulated n-alkanes. , 2005, Journal of colloid and interface science.

[61]  K Darkwa,et al.  Simulation of phase change drywalls in a passive solar building , 2006 .

[62]  Peter Schossig,et al.  Micro-encapsulated phase-change materials integrated into construction materials , 2005 .

[63]  S. C. Kaushik,et al.  Periodic heat transfer and load levelling of heat flux through a PCCM thermal storage wall/roof in an air-conditioned building☆ , 1981 .

[64]  Hongfa Di,et al.  Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook , 2007 .

[65]  Luisa F. Cabeza,et al.  An approach to the simulation of PCMs in building applications using TRNSYS , 2005 .

[66]  Alessandro Carbonari,et al.  Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls , 2006 .

[67]  L. Cabeza,et al.  Determination of enthalpy?temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties , 2003 .

[68]  Xin Wang,et al.  Influence of additives on thermal conductivity of shape-stabilized phase change material , 2006 .

[69]  Xu Xu,et al.  Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings , 2005 .

[70]  Ahmet Sarı,et al.  Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties , 2004 .

[71]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[72]  Chi-ming Lai,et al.  Heat transfer and thermal storage behaviour of gypsum boards incorporating micro-encapsulated PCM , 2010 .

[73]  R. Velraj,et al.  Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management , 2008 .

[74]  Joseph Virgone,et al.  Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling , 2009 .

[75]  Xin Wang,et al.  Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves , 2010 .

[76]  Zhengguo Zhang,et al.  Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials , 2008 .

[77]  Louis Gosselin,et al.  Thermal shielding of multilayer walls with phase change materials under different transient boundary conditions , 2009 .

[78]  Dorel Feldman,et al.  Latent heat storage in building materials , 1993 .

[79]  D. Feldman,et al.  Development and application of organic phase change mixtures in thermal storage gypsum wallboard , 1995 .

[80]  E. Onder,et al.  The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics , 2007 .

[81]  Hiki Hong,et al.  A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method , 2006 .

[82]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[83]  Hong He,et al.  Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system , 2009 .

[84]  D. Feldman,et al.  Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and large scale thermal testing , 1998 .

[85]  Luisa F. Cabeza,et al.  Experimental study of using PCM in brick constructive solutions for passive cooling , 2010 .

[86]  D. Feldman,et al.  Control aspects of latent heat storage and recovery in concrete , 2000 .

[87]  Joseph Virgone,et al.  Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM , 2010 .

[88]  Xin Wang,et al.  An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating , 2007 .

[89]  K Darkwa Evaluation of regenerative phase change drywalls: low energy buildings application , 1999 .

[90]  D. A. Neeper,et al.  Thermal dynamics of wallboard with latent heat storage , 2000 .

[91]  H. Takeuchi,et al.  An evaluation of microencapsulated PCM for use in cold energy transportation medium , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[92]  Xu Xu,et al.  Experimental study of under-floor electric heating system with shape-stabilized PCM plates , 2005 .

[93]  S. H. Choi,et al.  Thermal characteristics of paraffin in a spherical capsule during freezing and melting processes , 2000 .

[94]  Fredrik Setterwall,et al.  Phase transition temperature ranges and storage density of paraffin wax phase change materials , 2004 .

[95]  Philip C. Eames,et al.  The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building , 2006 .

[96]  S. I Güçeri,et al.  Modeling of a thermal wall panel using phase change materials , 1979 .

[97]  Mario A. Medina,et al.  Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator , 2010 .