A risk-loaded approach for regression analysis of risks

[1]  I. Gijbels,et al.  Extremile Regression , 2022, Journal of the American Statistical Association.

[2]  T. Shushi,et al.  A Cryptocurrency Risk–Return Analysis for Bull and Bear Regimes , 2021, The Journal of Alternative Investments.

[3]  L. Peng,et al.  Two-step risk analysis in insurance ratemaking , 2020, Scandinavian Actuarial Journal.

[4]  Haipeng Shen,et al.  Inference for conditional value-at-risk of a predictive regression , 2020 .

[5]  Emiliano A. Valdez,et al.  Predictive compound risk models with dependence , 2020 .

[6]  Omar De la Cruz Cabrera,et al.  Large-scale regression with non-convex loss and penalty , 2020, Applied Numerical Mathematics.

[7]  Udi E. Makov,et al.  Portfolio Optimization by a Bivariate Functional of the Mean and Variance , 2020, J. Optim. Theory Appl..

[8]  G. Pitselis Multi-stage nested classification credibility quantile regression model , 2020 .

[9]  Georg Keilbar,et al.  Modelling systemic risk using neural network quantile regression , 2018, Empirical Economics.

[10]  U. Makov,et al.  A Generalized Measure for the Optimal Portfolio Selection Problem and its Explicit Solution , 2018 .

[11]  Daniel R. Smith,et al.  Evaluating Value-at-Risk Models via Quantile Regression , 2008 .

[12]  M. Revan Özkale,et al.  The Restricted and Unrestricted Two-Parameter Estimators , 2007 .

[13]  Zhijie Xiao,et al.  Quantile Regression and Value at Risk , 2015 .

[14]  Jason D. M. Rennie,et al.  Loss Functions for Preference Levels: Regression with Discrete Ordered Labels , 2005 .