Network flow optimization for restoration of images

The network flow optimization approach is offered for restoration of gray-scale and color images corrupted by noise. The Ising models are used as a statistical background of the proposed method. We present the new multiresolution network flow minimum cut algorithm, which is especially efficient in identification of the maximum a posteriori (MAP) estimates of corrupted images. The algorithm is able to compute the MAP estimates of large-size images and can be used in a concurrent mode. We also consider the problem of integer minimization of two functions, U1(x)=λ∑i|yi−xi|