THz surface wave collapse on coated metal surfaces.

The Zenneck THz surface wave (Z-TSW) on metals is discussed with respect to its difficulty in generation and measurement. The spatial collapse of the extent of the Z-TSW evanescent field, upon the addition of a sub-wavelength dielectric layer on the metal surface, is explained by a simple model, in good agreement with exact analytical theory. Experimental measurements of the THz surface wave on an aluminum surface covered with a 12.5 microm thick dielectric layer have completely characterized the resultant single-mode dielectric layer THz surface wave (DL-TSW). The measured frequency-dependent exponential fall-off of the evanescent wave from the surface agrees well with theory. The DL-TSW frequency-dependent absorption coefficient, phase velocity, group velocity and group velocity dispersion have been obtained. These guided-wave parameters compare favorably with other guided wave structures.

[1]  H. Barlow Surface Waves , 1958, Proceedings of the IRE.

[2]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[3]  M. Klopfleisch,et al.  Experimental determination of the attenuation coefficient of surface electromagnetic waves , 1991 .

[4]  D. Grischkowsky,et al.  Terahertz demonstrations of effectively two-dimensional photonic bandgap structures. , 2006, Optics letters.

[5]  A. J. Sievers,et al.  ir surface-plasmon attenuation coefficients for Ge-coated Ag and Au metals , 1982 .

[6]  L. S. Mukina,et al.  Propagation of THz plasmon pulse on corrugated and flat metal surface , 2006 .

[7]  J. Coutaz,et al.  Surface plasmon THz waves on gratings , 2008 .

[8]  Mills,et al.  Surface corrugation and surface-polariton binding in the infrared frequency range. , 1989, Physical review. B, Condensed matter.

[9]  Daniel R. Grischkowsky,et al.  Plastic ribbon THz waveguides , 2000 .

[10]  R. J. Bell,et al.  Propagation distances of surface electromagnetic waves in the far infrared , 1979 .

[11]  Heinrich Kurz,et al.  Time-domain measurements of surface plasmon polaritons in the terahertz frequency range , 2004 .

[12]  A. Sommerfeld Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes , 1899 .

[13]  John O'Hara,et al.  Prism coupling to terahertz surface plasmon polaritons. , 2005, Optics express.

[14]  W. Mcneill,et al.  Far infrared surface plasmon propagation , 1981 .

[15]  George I. Stegeman,et al.  Attenuation of far‐infrared surface plasmons on overcoated metal , 1986 .

[16]  G. Zhizhin,et al.  Surface Electromagnetic Wave Propagation on Metal Surfaces , 1982 .

[17]  Daniel R. Grischkowsky,et al.  THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet , 2006 .

[18]  D. Grischkowsky,et al.  Undistorted guided-wave propagation of subpicosecond terahertz pulses. , 2001, Optics letters.

[19]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[20]  Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy , 2005 .

[21]  Yang,et al.  Long-range surface modes supported by thin films. , 1991, Physical review. B, Condensed matter.

[22]  Stephen S. Attwood,et al.  Surface‐Wave Propagation Over a Coated Plane Conductor , 1951 .

[23]  D. Grischkowsky,et al.  THz Sommerfeld wave propagation on a single metal wire , 2005 .