Light‐Mediated Manufacture and Manipulation of Actuators

Recent years have seen a considerable growth of research interests in developing novel technologies that permit designable manufacture and controllable manipulation of actuators. Among various fabrication and driving strategies, light has emerged as an enabler to reach this end, contributing to the development of actuators. Several accessible light-mediated manufacturing technologies, such as ultraviolet (UV) lithography and direct laser writing (DLW), are summarized. A series of light-driven strategies including optical trapping, photochemical actuation, and photothermal actuation for controllable manipulation of actuators is introduced. Current challenges and future perspectives of this field are discussed. To generalize, light holds great promise for the development of actuators.

[1]  Hongzhi Wang,et al.  Origami-inspired active graphene-based paper for programmable instant self-folding walking devices , 2015, Science Advances.

[2]  R. Al‐Kaysi,et al.  Reversible photoinduced twisting of molecular crystal microribbons. , 2011, Journal of the American Chemical Society.

[3]  Qidai Chen,et al.  Protein-based soft micro-optics fabricated by femtosecond laser direct writing , 2014, Light: Science & Applications.

[4]  Katsuhiko Ariga,et al.  Nanoarchitectonics for Dynamic Functional Materials from Atomic‐/Molecular‐Level Manipulation to Macroscopic Action , 2016, Advanced materials.

[5]  Yong‐Lai Zhang,et al.  Designable 3D nanofabrication by femtosecond laser direct writing , 2010 .

[6]  Dong-Yol Yang,et al.  Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique. , 2015, Macromolecular rapid communications.

[7]  Soo-young Park,et al.  Shape-responsive actuator from a single layer of a liquid-crystal polymer. , 2014, ACS applied materials & interfaces.

[8]  Haifeng Yu,et al.  Optical pendulum generator based on photomechanical liquid-crystalline actuators. , 2015, ACS applied materials & interfaces.

[9]  Thomas C. Hull,et al.  Origami structures with a critical transition to bistability arising from hidden degrees of freedom. , 2015, Nature materials.

[10]  Yang Liu,et al.  A Graphene‐Based Bimorph Structure for Design of High Performance Photoactuators , 2015, Advanced materials.

[11]  Jochen Feldmann,et al.  Optical force stamping lithography. , 2011, Nano letters.

[12]  Elisabetta A. Matsumoto,et al.  Biomimetic 4D printing. , 2016, Nature materials.

[13]  D. Hashizume,et al.  Photomechanical bending of salicylideneaniline crystals. , 2011, Chemical communications.

[14]  Ryan R. Kohlmeyer,et al.  Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. , 2013, Angewandte Chemie.

[15]  H. M. Nussenzveig,et al.  Theory of optical tweezers , 1999 .

[16]  Rafal Klajn,et al.  Spiropyran-based dynamic materials. , 2014, Chemical Society reviews.

[17]  Takao Aoyagi,et al.  Photo-switchable control of pH-responsive actuators via pH jump reaction , 2012 .

[18]  Yanlei Yu,et al.  Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation. , 2013, Journal of the American Chemical Society.

[19]  S. Kobatake,et al.  Alkyl substituent effects in photochemical and thermal reactions of photochromic thiophene-S,S-dioxidized diarylethenes , 2014 .

[20]  Kishan Dholakia,et al.  Optical micromanipulation takes hold , 2006 .

[21]  Katsuhiko Ariga,et al.  Mechanical Control of Nanomaterials and Nanosystems , 2012, Advanced materials.

[22]  R. Vaia,et al.  Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks , 2011 .

[23]  Yi Cui,et al.  Quantitative imaging of single mRNA splice variants in living cells. , 2014, Nature nanotechnology.

[24]  T. White,et al.  Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. , 2015, Nature materials.

[25]  Yong‐Lai Zhang,et al.  Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing , 2015 .

[26]  M. Aono,et al.  Forming nanomaterials as layered functional structures toward materials nanoarchitectonics , 2012 .

[27]  Timothy J. White,et al.  Light to work transduction and shape memory in glassy, photoresponsive macromolecular systems: Trends and opportunities , 2012 .

[28]  Jung Ho Je,et al.  A light-driven supramolecular nanowire actuator. , 2015, Nanoscale.

[29]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[30]  Soo-young Park,et al.  A liquid crystal polymer based single layer chemo-responsive actuator. , 2014, Chemical communications.

[31]  David J. Singh,et al.  Light scattering and surface plasmons on small spherical particles , 2014, 1407.2345.

[32]  Masahiro Irie,et al.  A diarylethene cocrystal that converts light into mechanical work. , 2010, Journal of the American Chemical Society.

[33]  Alexandra Boltasseva,et al.  Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. , 2016, Nature nanotechnology.

[34]  Jiaxi Cui,et al.  Photo-responsive polymers: properties, synthesis and applications , 2014 .

[35]  Dermot Diamond,et al.  Molecular Design of Light-Responsive Hydrogels, For in Situ Generation of Fast and Reversible Valves for Microfluidic Applications , 2015 .

[36]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[37]  Johannes Courtial,et al.  Assembly of 3-dimensional structures using programmable holographic optical tweezers. , 2004, Optics express.

[38]  Dirk J. Broer,et al.  Accordion‐like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films , 2014 .

[39]  Hong Xia,et al.  Ferrofluids for Fabrication of Remotely Controllable Micro‐Nanomachines by Two‐Photon Polymerization , 2010, Advanced materials.

[40]  Zewen Liu,et al.  Self-folding graphene-polymer bilayers , 2015 .

[41]  Haifeng Yu,et al.  Wrinkled liquid-crystalline microparticle-enhanced photoresponse of PDLC-like films by coupling with mechanical stretching. , 2011, Small.

[42]  Bart Kahr,et al.  Model for photoinduced bending of slender molecular crystals. , 2014, Journal of the American Chemical Society.

[43]  H. Koshima,et al.  Light-Driven Bending Crystals of Salicylidenephenylethylamines in Enantiomeric and Racemate Forms , 2013 .

[44]  Wei Chen,et al.  Hybrid nanoscale organic molecular crystals assembly as a photon-controlled actuator. , 2013, Angewandte Chemie.

[45]  Síle Nic Chormaic,et al.  Optical trapping and manipulation of micrometer and submicrometer particles , 2015 .

[46]  Chen Cao,et al.  A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator , 2015 .

[47]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[48]  T. Ikeda,et al.  Can sunlight drive the photoinduced bending of polymer films , 2009 .

[49]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[50]  P. Naumov,et al.  Light- and Humidity-Induced Motion of an Acidochromic Film. , 2015, Angewandte Chemie.

[51]  Christopher J. Bardeen,et al.  Reversible Photoinduced Shape Changes of Crystalline Organic Nanorods , 2007 .

[52]  Jun Feng,et al.  Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: new prototype robotic motions under infrared-light stimuli , 2011 .

[53]  Luke P. Lee,et al.  Bioinspired optical antennas: gold plant viruses , 2015, Light: Science & Applications.

[54]  Hong-Bo Sun,et al.  Dynamic laser prototyping for biomimetic nanofabrication , 2014 .

[55]  Hong-Bo Sun,et al.  Bioinspired Graphene Actuators Prepared by Unilateral UV Irradiation of Graphene Oxide Papers , 2015 .

[56]  Yong‐Lai Zhang,et al.  Programmable assembly of CdTe quantum dots into microstructures by femtosecond laser direct writing , 2013 .

[57]  Luke P. Lee,et al.  Ultrafast photonic PCR , 2015, Light: Science & Applications.

[58]  R. Hayward,et al.  Thermally responsive rolling of thin gel strips with discrete variations in swelling , 2012 .

[59]  Evin Gultepe,et al.  Self-folding devices and materials for biomedical applications. , 2012, Trends in biotechnology.

[60]  Danqing Liu,et al.  Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating , 2015, Proceedings of the National Academy of Sciences.

[61]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[62]  T. Miyata,et al.  Photoinduced Bending of Self-Assembled Azobenzene-Siloxane Hybrid. , 2015, Journal of the American Chemical Society.

[63]  Yanlei Yu,et al.  NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. , 2011, Journal of the American Chemical Society.

[64]  Yanlei Yu,et al.  A reactive azobenzene liquid-crystalline block copolymer as a promising material for practical application of light-driven soft actuators , 2015 .

[65]  Hiroaki Misawa,et al.  Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. , 2014, ACS nano.

[66]  S. Serak,et al.  Azobenzene liquid crystal polymer-based membrane and cantilever optical systems. , 2009, Optics express.

[67]  D. Broer,et al.  Printed artificial cilia from liquid-crystal network actuators modularly driven by light. , 2009, Nature materials.

[68]  Xing Yi Ling,et al.  Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation. , 2015, Small.

[69]  Toshiyuki Watanabe,et al.  Photochemical reaction in azobenzene-containing rigid poly(amide acid) networks , 2014 .

[70]  S. Kobatake,et al.  Photoreversible current ON/OFF switching by the photoinduced bending of gold-coated diarylethene crystals. , 2015, Chemical communications.

[71]  H. Misawa,et al.  Plasmonic antenna effects on photochemical reactions. , 2011, Accounts of chemical research.

[72]  Weidong Zhang,et al.  Photomechanical bending of linear azobenzene polymer , 2014 .

[73]  Hong-Bo Sun,et al.  Dynamically tunable protein microlenses. , 2012, Angewandte Chemie.

[74]  Yucheng Ding,et al.  Photoresponsive Soft‐Robotic Platform: Biomimetic Fabrication and Remote Actuation , 2014 .

[75]  J. Glückstad,et al.  Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces , 2013 .

[76]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[77]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[78]  P. Palffy-Muhoray Liquid crystals: Printed actuators in a flap. , 2009, Nature materials.

[79]  Kai Liu,et al.  Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. , 2012, Nano letters.

[80]  B. Champagne,et al.  Design and characterization of molecular nonlinear optical switches. , 2013, Accounts of chemical research.

[81]  Hong-Bo Sun,et al.  Solvent response of polymers for micromachine manipulation. , 2011, Physical chemistry chemical physics : PCCP.

[82]  Yanlei Yu,et al.  Photodeformable polymer gels and crosslinked liquid-crystalline polymers , 2012 .

[83]  A. Kalloo,et al.  Biopsy with Thermally‐Responsive Untethered Microtools , 2013, Advanced materials.

[84]  Dayong Chen,et al.  Stimuli‐responsive buckling mechanics of polymer films , 2014 .

[85]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[86]  Haifeng Yu,et al.  Photocontrollable Liquid‐Crystalline Actuators , 2011, Advanced materials.

[87]  Thomas C. Hull,et al.  Programming Reversibly Self‐Folding Origami with Micropatterned Photo‐Crosslinkable Polymer Trilayers , 2015, Advanced materials.

[88]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[89]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[90]  Halina Rubinsztein-Dunlop,et al.  The effect of Mie resonances on trapping in optical tweezers. , 2008, Optics express.

[91]  M. Jamal,et al.  Differentially photo-crosslinked polymers enable self-assembling microfluidics. , 2011, Nature communications.

[92]  Katsuhiko Ariga,et al.  Bioactive nanocarbon assemblies: Nanoarchitectonics and applications , 2014 .

[93]  Luke P. Lee,et al.  Optofluidic control using photothermal nanoparticles , 2006, Nature materials.

[94]  R. Vaia,et al.  Design of polarization-dependent, flexural-torsional deformation in photo responsive liquid crystalline polymer networks. , 2014, Soft matter.

[95]  Yanlei Yu,et al.  Fully plastic microrobots which manipulate objects using only visible light , 2010 .

[96]  Jelle E. Stumpel,et al.  Photoswitchable ratchet surface topographies based on self-protonating spiropyran-NIPAAM hydrogels. , 2014, ACS applied materials & interfaces.

[97]  Yanlei Yu,et al.  How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? , 2006, Angewandte Chemie.

[98]  Michele Dipalo,et al.  Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects , 2015, Nature Communications.

[99]  Feng Shi,et al.  Design of a UV-responsive microactuator on a smart device for light-induced ON-OFF-ON motion , 2014 .

[100]  Hong-Bo Sun,et al.  Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction , 2010 .

[101]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[102]  Chia-Hung Chen,et al.  Gradient Porous Elastic Hydrogels with Shape‐Memory Property and Anisotropic Responses for Programmable Locomotion , 2015 .

[103]  Liesbet Lagae,et al.  Nanoscale origami for 3D optics. , 2011, Small.

[104]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[105]  T. Xie Tunable polymer multi-shape memory effect , 2010, Nature.

[106]  Nelson V. Tabiryan,et al.  Liquid crystalline polymer cantilever oscillators fueled by light , 2010 .

[107]  Chuan Wang,et al.  Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films. , 2015, ACS nano.

[108]  Ryan C Hayward,et al.  Photothermally reprogrammable buckling of nanocomposite gel sheets. , 2015, Angewandte Chemie.

[109]  K. Ariga,et al.  Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. , 2011, Small.

[110]  M. Jamal,et al.  Enzymatically triggered actuation of miniaturized tools. , 2010, Journal of the American Chemical Society.

[111]  Yong‐Lai Zhang,et al.  Photoreduction of Graphene Oxides: Methods, Properties, and Applications , 2014 .

[112]  A. Schenning,et al.  Programmed morphing of liquid crystal networks , 2014 .

[113]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[114]  L. Qu,et al.  Environmentally responsive graphene systems. , 2014, Small.

[115]  Katsuhiko Ariga,et al.  Enzyme nanoarchitectonics: organization and device application. , 2013, Chemical Society reviews.

[116]  H. Misawa,et al.  Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths , 2013 .

[117]  G. Whitesides,et al.  Buckling of Elastomeric Beams Enables Actuation of Soft Machines , 2015, Advanced materials.

[118]  R. Hayward,et al.  Designing Responsive Buckled Surfaces by Halftone Gel Lithography , 2012, Science.

[119]  Kenji Matsuda,et al.  Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. , 2014, Chemical reviews.

[120]  D. Thourhout,et al.  Optomechanical device actuation through the optical gradient force , 2010 .

[121]  D. Broer,et al.  Self-assembled dynamic 3D fingerprints in liquid-crystal coatings towards controllable friction and adhesion. , 2014, Angewandte Chemie.

[122]  T. Ikeda,et al.  Enhancement of mechanical stability in hydrogen-bonded photomobile materials with chemically modified single-walled carbon nanotubes , 2014 .

[123]  Michael G Debije,et al.  Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. , 2012, Angewandte Chemie.

[124]  L. J. Mueller,et al.  Mechanism of photoinduced bending and twisting in crystalline microneedles and microribbons composed of 9-methylanthracene. , 2014, Journal of the American Chemical Society.

[125]  Lan Jiang,et al.  Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. , 2013, Angewandte Chemie.

[126]  Dirk J. Broer,et al.  Stimuli-responsive photonic polymer coatings. , 2014, Chemical communications.

[127]  Tomáš Čižmár,et al.  Multiple optical trapping and binding: new routes to self-assembly , 2010 .

[128]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[129]  Christian D. Santangelo,et al.  Swelling-driven rolling and anisotropic expansion of striped gel sheets , 2013 .

[130]  Andrew G. Gillies,et al.  Optically-and Thermally-responsive Programmable Materials Based on Carbon Nanotube-hydrogel Polymer Composites , 2022 .

[131]  M. Irie,et al.  Light-driven molecular-crystal actuators: rapid and reversible bending of rodlike mixed crystals of diarylethene derivatives. , 2012, Angewandte Chemie.

[132]  R. Al‐Kaysi,et al.  Photoinduced curling of organic molecular crystal nanowires. , 2013, Angewandte Chemie.

[133]  Zhiyong Xiao,et al.  Multimodal Nonlinear Optical Imaging of MoS₂ and MoS₂-Based van der Waals Heterostructures. , 2016, ACS nano.

[134]  M. Jamal,et al.  Self-Folding Single Cell Grippers , 2014, Nano letters.

[135]  Wei-Yi Tsai,et al.  Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. , 2014, Nano letters.

[136]  Ryan R. Kohlmeyer,et al.  Remote, local, and chemical programming of healable multishape memory polymer nanocomposites. , 2012, Nano letters.

[137]  Hong-Bo Sun,et al.  Moisture‐Responsive Graphene Paper Prepared by Self‐Controlled Photoreduction , 2015, Advanced materials.

[138]  Halina Rubinsztein-Dunlop,et al.  Laser trapping of colloidal metal nanoparticles. , 2015, ACS nano.

[139]  Halina Rubinsztein-Dunlop,et al.  A photon-driven micromotor can direct nerve fibre growth , 2011, Nature Photonics.

[140]  Tomoyuki Ishikawa,et al.  Rapid and reversible shape changes of molecular crystals on photoirradiation , 2007, Nature.

[141]  Haitao Huang,et al.  Photodeformable CLCP material: study on photo-activated microvalve applications , 2011 .

[142]  Katsuhiko Ariga,et al.  Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future , 2015 .

[143]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[144]  Yanlei Yu,et al.  Photodeformable polymer materials: towards light-driven spoke-type micromotor application , 2014 .

[145]  Huisheng Peng,et al.  Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. , 2012, Angewandte Chemie.

[146]  Bradley J. Nelson,et al.  Magnetic Helical Microswimmers Functionalized with Lipoplexes for Targeted Gene Delivery , 2015 .

[147]  T. Ikeda,et al.  Photomobile materials with interpenetrating polymer networks composed of liquid-crystalline and amorphous polymers , 2015 .

[148]  T. Ikeda,et al.  Photomobile polymer materials—various three-dimensional movements , 2009 .