Evaporated pentacene thin films with thicknesses from several nm to 150 nm on gold and silver substrates have been studied by ultraviolet photoelectron spectroscopy (UPS), near-edge X-ray absorption fine structure (NEXAFS), scanning tunneling microscopy (STM), and atomic force microscopy (AFM). It was found that pentacene thin-film structures, particularly their molecular orientations, are strongly influenced by the metal substrates. UPS measurements revealed a distinct change in the valence band structures of pentacene on Au compared to those on Ag, which is attributed to the different packing between adjacent molecules. Using NEXAFS, we observed 74+/-5 degrees and 46+/-5 degrees molecular tilt angles on Ag and Au, respectively, for all measured thicknesses. We propose that pentacene molecules stand up on the surface and form the "thin-film phase" structure on Ag. On Au, pentacene films grow in domains with molecules either lying flat or standing up on the substrate. Such a mixture of two crystalline phases leads to an average tilt angle of 46 degrees for the whole film and the change in valence band structures. STM and distance-voltage (z-V) spectroscopy studies confirm the existence of two crystalline phases on Au with different conducting properties. z-V spectra on the low conducting phase clearly indicate its nature as "thin-film phase".