Cheminformatics Approaches to Study Drug Polypharmacology

[1]  José L. Medina-Franco,et al.  Data Mining of Protein-Binding Profiling Data Identifies Structural Modifications that Distinguish Selective and Promiscuous Compounds , 2012, J. Chem. Inf. Model..

[2]  José L. Medina-Franco,et al.  MOLECULAR SIMILARITY ANALYSIS , 2013 .

[3]  José L Medina-Franco,et al.  Platform for Unified Molecular Analysis: PUMA , 2017, J. Chem. Inf. Model..

[4]  M. Rosini,et al.  Polypharmacology: the rise of multitarget drugs over combination therapies. , 2014, Future medicinal chemistry.

[5]  Mark Johnson,et al.  Using Molecular Equivalence Numbers To Visually Explore Structural Features that Distinguish Chemical Libraries , 2002, J. Chem. Inf. Comput. Sci..

[6]  Jürgen Bajorath,et al.  Application of a New Scaffold Concept for Computational Target Deconvolution of Chemical Cancer Cell Line Screens , 2017, ACS omega.

[7]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[8]  Antonio Lavecchia,et al.  Machine-learning approaches in drug discovery: methods and applications. , 2015, Drug discovery today.

[9]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[10]  Jean-Louis Reymond,et al.  The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data , 2017, Journal of Cheminformatics.

[11]  Mathias Wawer,et al.  Navigating structure-activity landscapes. , 2009, Drug discovery today.

[12]  José L Medina-Franco,et al.  Chemoinformatics: a perspective from an academic setting in Latin America , 2017, Molecular Diversity.

[13]  Antonio Lavecchia,et al.  In silico methods to address polypharmacology: current status, applications and future perspectives. , 2016, Drug discovery today.

[14]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[15]  John B. O. Mitchell,et al.  Drug Design for CNS Diseases: Polypharmacological Profiling of Compounds Using Cheminformatic, 3D-QSAR and Virtual Screening Methodologies , 2016, Front. Neurosci..

[16]  George Papadatos,et al.  Target Identification of Mycobacterium tuberculosis Phenotypic Hits Using a Concerted Chemogenomic, Biophysical, and Structural Approach , 2017, Front. Pharmacol..

[17]  Meir Glick,et al.  Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases , 2006, J. Chem. Inf. Model..

[18]  A. Bender,et al.  In silico target fishing: Predicting biological targets from chemical structure , 2006 .

[19]  José L. Medina-Franco,et al.  Scanning Structure-Activity Relationships with Structure-Activity Similarity and Related Maps: From Consensus Activity Cliffs to Selectivity Switches , 2012, J. Chem. Inf. Model..

[20]  Didier Rognan,et al.  Structure‐Based Approaches to Target Fishing and Ligand Profiling , 2010, Molecular informatics.

[21]  R. M. Muir,et al.  Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients , 1962, Nature.

[22]  Miklos Feher,et al.  Novel 2D Fingerprints for Ligand-Based Virtual Screening , 2006, J. Chem. Inf. Model..

[23]  J. Jesús Naveja,et al.  Open chemoinformatic resources to explore the structure, properties and chemical space of molecules , 2017 .

[24]  Lars Richter,et al.  Medicinal chemistry in the era of big data. , 2015, Drug discovery today. Technologies.

[25]  Yoshimasa Takahashi,et al.  Predictive Activity Profiling of Drugs by Topological-Fragment-Spectra-Based Support Vector Machines , 2008, J. Chem. Inf. Model..

[26]  Mitchell A. Miller Chemical database techniques in drug discovery , 2002, Nature Reviews Drug Discovery.

[27]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[28]  J. Dearden,et al.  QSAR modeling: where have you been? Where are you going to? , 2014, Journal of medicinal chemistry.

[29]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[30]  G. Maggiora,et al.  A simple mathematical approach to the analysis of polypharmacology and polyspecificity data , 2017, F1000Research.

[31]  A. Hagler,et al.  Chemoinformatics and Drug Discovery , 2002, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[32]  José L. Medina-Franco,et al.  Activity Landscape Plotter: A Web-Based Application for the Analysis of Structure-Activity Relationships , 2017, J. Chem. Inf. Model..

[33]  George Karypis,et al.  Target Fishing for Chemical Compounds Using Target-Ligand Activity Data and Ranking Based Methods , 2009, J. Chem. Inf. Model..

[34]  José L. Medina-Franco,et al.  Visualization of the Chemical Space in Drug Discovery , 2008 .

[35]  Stéphane Bourg,et al.  VSPrep: A General KNIME Workflow for the Preparation of Molecules for Virtual Screening , 2017, Molecular informatics.

[36]  J. Jesús Naveja,et al.  ChemMaps: Towards an approach for visualizing the chemical space based on adaptive satellite compounds , 2017, F1000Research.

[37]  Robert P Sheridan,et al.  Why do we need so many chemical similarity search methods? , 2002, Drug discovery today.

[38]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[39]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[40]  Jie Dong,et al.  TargetNet: a web service for predicting potential drug–target interaction profiling via multi-target SAR models , 2016, Journal of Computer-Aided Molecular Design.

[41]  Alexander Tropsha,et al.  Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation , 2016, J. Chem. Inf. Model..

[42]  Rajarshi Guha,et al.  Exploring structure–activity data using the landscape paradigm , 2012, Wiley interdisciplinary reviews. Computational molecular science.

[43]  Karina Martinez-Mayorga,et al.  Balancing novelty with confined chemical space in modern drug discovery , 2014, Expert opinion on drug discovery.

[44]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[45]  Gerald M. Maggiora,et al.  Hierarchical Strategy for Identifying Active Chemotype Classes in Compound Databases , 2006, Chemical biology & drug design.

[46]  José L. Medina-Franco,et al.  Scaffold Diversity Analysis of Compound Data Sets Using an Entropy-Based Measure , 2009 .

[47]  Ruili Huang,et al.  CERAPP: Collaborative Estrogen Receptor Activity Prediction Project , 2016, Environmental health perspectives.

[48]  M. Bogyo,et al.  Target deconvolution techniques in modern phenotypic profiling. , 2013, Current opinion in chemical biology.

[49]  Rajarshi Guha,et al.  Chemoinformatic Analysis of Combinatorial Libraries, Drugs, Natural Products, and Molecular Libraries Small Molecule Repository , 2009, J. Chem. Inf. Model..

[50]  Jürgen Bajorath,et al.  Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. , 2007, Drug discovery today.

[51]  Z. Deng,et al.  Bridging chemical and biological space: "target fishing" using 2D and 3D molecular descriptors. , 2006, Journal of medicinal chemistry.

[52]  Nikolai S. Zefirov,et al.  Progress in visual representations of chemical space , 2015, Expert opinion on drug discovery.

[53]  José L. Medina-Franco,et al.  Consensus Diversity Plots: a global diversity analysis of chemical libraries , 2016, Journal of Cheminformatics.

[54]  José L Medina-Franco,et al.  Insights from pharmacological similarity of epigenetic targets in epipolypharmacology. , 2018, Drug discovery today.

[55]  José L. Medina-Franco,et al.  Structure–activity relationships of benzimidazole derivatives as antiparasitic agents: Dual activity-difference (DAD) maps , 2011 .

[56]  Thorsten Meinl,et al.  KNIME - the Konstanz information miner: version 2.0 and beyond , 2009, SKDD.

[57]  J. Jesús Naveja,et al.  Review. One Drug for Multiple Targets: A Computational Perspective , 2016 .

[58]  J. Jesús Naveja,et al.  Activity landscape sweeping: insights into the mechanism of inhibition and optimization of DNMT1 inhibitors , 2015 .

[59]  Wei Zheng,et al.  Phenotypic screens as a renewed approach for drug discovery. , 2013, Drug discovery today.

[60]  Alexandre Varnek Tutorials in Chemoinformatics , 2017 .

[61]  José L. Medina-Franco,et al.  Database fingerprint (DFP): an approach to represent molecular databases , 2017, Journal of Cheminformatics.

[62]  Petra Schneider,et al.  Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus , 2014, Proceedings of the National Academy of Sciences.

[63]  Richard D. Cramer,et al.  The inevitable QSAR renaissance , 2011, Journal of Computer-Aided Molecular Design.

[64]  J. Jesús Naveja,et al.  Getting SMARt in drug discovery: chemoinformatics approaches for mining structure–multiple activity relationships , 2017 .

[65]  J. Medina-Franco,et al.  Epigenetic relevant chemical space: a chemoinformatic characterization of inhibitors of DNA methyltransferases , 2015 .

[66]  John P. Overington,et al.  Chemical databases: curation or integration by user-defined equivalence? , 2015, Drug discovery today. Technologies.