Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-coded Linear Genetic Programming

Estimation of suspended sediment yield is subject to uncertainty and bias. Many methods have been developed for estimating sediment yield but they still lack accuracy and robustness. This paper investigates the use of a machine-coded linear genetic programming (LGP) in daily suspended sediment estimation. The accuracy of LGP is compared with those of the Gene-expression programming (GEP), which is another branch of GP, and artificial neural network (ANN) technique. Daily streamflow and suspended sediment data from two stations on the Tongue River in Montana, USA, are used as case studies. Root mean square error (RMSE) and determination coefficient (R2) statistics are used for evaluating the accuracy of the models. Based on the comparison of the results, it is found that the LGP performs better than the GEP and ANN techniques. The GEP was also found to be better than the ANN. For the upstream and downstream stations, it is found that the LGP models with RMSE = 175 ton/day, R2 = 0.941 and RMSE = 254 ton/day, R2 = 0.959 in test period is superior in estimating daily suspended sediments than the best accurate GEP model with RMSE = 231 ton/day, R2 = 0.941 and RMSE = 331 ton/day, R2 = 0.934, respectively.

[1]  Chau-Ping Yang,et al.  Primary influential factors in the management of public transportation projects in Taiwan , 2007 .

[2]  Mustafa Gunal,et al.  Genetic Programming Approach for Prediction of Local Scour Downstream of Hydraulic Structures , 2008 .

[3]  Mehdi Ghasemzadeh,et al.  Uncertainty Analysis in Sediment Load Modeling Using ANN and SWAT Model , 2010 .

[4]  Cândida Ferreira,et al.  Gene Expression Programming: A New Adaptive Algorithm for Solving Problems , 2001, Complex Syst..

[5]  Daniel Rivero,et al.  Determination of the unit hydrograph of a typical urban basin using genetic programming and artificial neural networks , 2007 .

[6]  N. K. Goel,et al.  Takagi–Sugeno fuzzy inference system for modeling stage–discharge relationship , 2006 .

[7]  O. Kisi,et al.  A genetic programming approach to suspended sediment modelling , 2008 .

[8]  Vijay P. Singh,et al.  Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree , 2010 .

[9]  Özgür Kişi,et al.  Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation / Prévision et estimation de la concentration en matières en suspension avec des perceptrons multi-couches et l’algorithme d’apprentissage de Levenberg-Marquardt , 2004 .

[10]  Aytac Guven,et al.  Linear genetic programming for time-series modelling of daily flow rate , 2009 .

[11]  H. Md. Azamathulla,et al.  Linear genetic programming for prediction of circular pile scour , 2009 .

[12]  Ozgur Kisi,et al.  Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data , 2009 .

[13]  Hafzullah Aksoy,et al.  Genetic Programming‐Based Empirical Model for Daily Reference Evapotranspiration Estimation , 2008 .

[14]  Peter A. Whigham,et al.  Modelling rainfall-runoff using genetic programming , 2001 .

[15]  Vladan Babovic,et al.  Velocity predictions in compound channels with vegetated floodplains using genetic programming , 2003 .

[16]  null null,et al.  Artificial Neural Networks in Hydrology. II: Hydrologic Applications , 2000 .

[17]  R. K. Rai,et al.  Event-based Sediment Yield Modeling using Artificial Neural Network , 2008 .

[18]  Ozgur Kisi,et al.  Streamflow Forecasting Using Different Artificial Neural Network Algorithms , 2007 .

[19]  Jørgen Fredsøe,et al.  Data analysis of bed concentration of suspended sediment , 1994 .

[20]  Ozgur Kisi,et al.  Methods to improve the neural network performance in suspended sediment estimation , 2006 .

[21]  Mihai Oltean,et al.  A Comparison of Several Linear Genetic Programming Techniques , 2003, Complex Syst..

[22]  H. Md. Azamathulla,et al.  Genetic Programming to Predict Bridge Pier Scour , 2010 .

[23]  H. Akaike A new look at the statistical model identification , 1974 .

[24]  Hafzullah Aksoy,et al.  An explicit neural network formulation for evapotranspiration , 2008 .

[25]  G. Tayfur Artificial neural networks for sheet sediment transport , 2002 .

[26]  Wolfgang Banzhaf,et al.  A comparison of linear genetic programming and neural networks in medical data mining , 2001, IEEE Trans. Evol. Comput..

[27]  H. K. Cigizoglu,et al.  ESTIMATION AND FORECASTING OF DAILY SUSPENDED SEDIMENT DATA BY MULTI-LAYER PERCEPTRONS , 2004 .

[28]  Özgür Kisi,et al.  A machine code-based genetic programming for suspended sediment concentration estimation , 2010, Adv. Eng. Softw..

[29]  Vladan Babovic,et al.  Data Mining and Knowledge Discovery in Sediment Transport , 2000 .

[30]  Ozgur Kisi,et al.  Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques / Modélisation de la charge journalière en matières en suspension dans des rivières turques à l'aide de plusieurs techniques empiriques , 2008 .

[31]  Ozgur Kisi,et al.  Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones , 2005 .

[32]  O. Kisi,et al.  Comparison of three back-propagation training algorithms for two case studies , 2005 .

[33]  R. S. Govindaraju,et al.  Artificial Neural Networks in Hydrology , 2010 .

[34]  O. Ks Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation , 2004 .

[35]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[36]  Mustafa Gunal,et al.  Prediction of pressure fluctuations on sloping stilling basins , 2006 .

[37]  Markus Brameier,et al.  On linear genetic programming , 2005 .

[38]  Dragan Savic,et al.  A Genetic Programming Approach to Rainfall-Runoff Modelling , 1999 .

[39]  Mustafa Gunal,et al.  Prediction of Scour Downstream of Grade-Control Structures Using Neural Networks , 2008 .

[40]  P. Vincent,et al.  Effect of inflow forecast accuracy and operating time horizon in optimizing irrigation releases , 2007 .

[41]  Vladan Babovic,et al.  Declarative and Preferential Bias in GP-based Scientific Discovery , 2002, Genetic Programming and Evolvable Machines.

[42]  Özgür Kisi,et al.  Constructing neural network sediment estimation models using a data-driven algorithm , 2008, Math. Comput. Simul..

[43]  Gokmen Tayfur,et al.  Artificial neural networks for estimating daily total suspended sediment in natural streams , 2006 .

[44]  Ozgur Kisi,et al.  Suspended sediment prediction using two different feed-forward back-propagation algorithms , 2007 .

[45]  Daniel Rivero,et al.  Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ann and gp , 2003, Appl. Artif. Intell..

[46]  Yaqub Rafiq,et al.  An Evolutionary Computation Approach to Sediment Transport Modelling , 2006 .

[47]  Ajith Abraham,et al.  A Linear Genetic Programming Approach for Modeling Electricity Demand Prediction in Victoria , 2001, HIS.