Nanoelectromechanical Tuning of High-Q Slot Metasurfaces

Nanoelectromechanical devices have been used widely in many applications across photonics, electronics, and acoustics. Their incorporation into metasurface systems could be beneficial in designing new types of active photonic devices. Here, we propose a design of active metasurfaces using a nanoelectromechanical system (NEMS) composed of silicon bars which operates under CMOS-level voltage and achieves phase modulation with wavelength-scale pixel pitch. By introducing a perturbation to the slot mode propagating between the silicon bars, the device operates in a high-Q regime, making the optical mode highly sensitive to mechanical movement. An over 12 dB reflection modulation is observed by full-wave simulation, and over 10% is achieved in the proof-of-concept experiment under CMOS-level voltage. We also simulate a device with 1.8π phase response using a bottom gold mirror. Based on this device, a 3-pixel optical beam deflector is shown to have 75% diffraction efficiency.

[1]  M. Jang,et al.  Full 2π tunable phase modulation using avoided crossing of resonances , 2022, Nature Communications.

[2]  T. Krauss,et al.  Beyond Q: The Importance of the Resonance Amplitude for Photonic Sensors , 2022, ACS photonics.

[3]  Jonathan A. Fan,et al.  Dynamic circular birefringence response with fractured geometric phase metasurface systems , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Ming C. Wu,et al.  A large-scale microelectromechanical-systems-based silicon photonics LiDAR , 2022, Nature.

[5]  A. Majumdar,et al.  Millimeter-scale focal length tuning with MEMS-integrated meta-optics employing high-throughput fabrication , 2021, Scientific Reports.

[6]  F. Capasso,et al.  Electro-optic spatial light modulator from an engineered organic layer , 2021, Nature Communications.

[7]  J. Dionne,et al.  High-Quality-Factor Silicon-on-Lithium Niobate Metasurfaces for Electro-optically Reconfigurable Wavefront Shaping. , 2021, Nano letters.

[8]  S. Maier,et al.  Fabrication robustness in BIC metasurfaces , 2021, Nanophotonics.

[9]  F. Capasso,et al.  Gigahertz free-space electro-optic modulators based on Mie resonances , 2021, Nature Communications.

[10]  Tian Gu,et al.  Myths and truths about optical phase change materials: A perspective , 2021, Applied Physics Letters.

[11]  A. Faraon,et al.  Nano-electromechanical Tuning of Dual-Mode Resonant Dielectric Metasurfaces for Dynamic Amplitude and Phase Modulation. , 2021, Nano letters.

[12]  H. Atwater,et al.  Array-Level Inverse Design of Beam Steering Active Metasurfaces. , 2020, ACS nano.

[13]  K. Ha,et al.  All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications , 2020, Nature Nanotechnology.

[14]  M. Lauermann,et al.  Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines , 2020, Optica.

[15]  U. Celano,et al.  Electrical tuning of phase-change antennas and metasurfaces , 2020, Nature Nanotechnology.

[16]  J. Dionne,et al.  High quality factor phase gradient metasurfaces , 2020, Nature Nanotechnology.

[17]  Hualiang Zhang,et al.  Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material , 2020, Nature Nanotechnology.

[18]  Harry A. Atwater,et al.  Electro-Optically Tunable Multifunctional Metasurfaces. , 2020, ACS nano.

[19]  Chengkuo Lee,et al.  Development Trends and Perspectives of Future Sensors and MEMS/NEMS , 2019, Micromachines.

[20]  Andrei Faraon,et al.  Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces , 2019, Nature Photonics.

[21]  Mark L. Brongersma,et al.  Temporal color mixing and dynamic beam shaping with silicon metasurfaces , 2019, Science.

[22]  Vladimir M. Shalaev,et al.  Spatiotemporal light control with active metasurfaces , 2019, Science.

[23]  F Y Gardes,et al.  Ultra-sharp asymmetric Fano-like resonance spectrum on Si photonic platform. , 2019, Optics express.

[24]  Ming Lu,et al.  Dielectric metasurfaces for complete and independent control of the optical amplitude and phase , 2019, Light, science & applications.

[25]  Y. Kivshar,et al.  Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum. , 2018, Physical review letters.

[26]  Seyedeh Mahsa Kamali,et al.  Compact folded metasurface spectrometer , 2018, Nature Communications.

[27]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[28]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[29]  J. Dionne,et al.  Nonreciprocal Flat Optics with Silicon Metasurfaces. , 2018, Nano letters.

[30]  Seyedeh Mahsa Kamali,et al.  High-Speed, Phase-Dominant Spatial Light Modulation with Silicon-Based Active Resonant Antennas , 2017 .

[31]  Vien Van,et al.  Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration , 2017, Nature Communications.

[32]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[33]  K. Schjølberg-Henriksen,et al.  Wafer-level Au–Au bonding in the 350–450 °C temperature range , 2014 .

[34]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[35]  S. Weiss,et al.  Localized Field Enhancements in Guided and Defect Modes of a Periodic Slot Waveguide , 2011, IEEE Photonics Journal.

[36]  P. Bienstman,et al.  Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator , 2009, IEEE Photonics Journal.

[37]  Núria Barniol,et al.  A Compact and Low-Power CMOS Circuit for Fully Integrated NEMS Resonators , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[38]  A. Martinez,et al.  Design of Silicon-Based Slot Waveguide Configurations for Optimum Nonlinear Performance , 2007, Journal of Lightwave Technology.

[39]  Michal Lipson,et al.  Subwavelength confinement in an integrated metal slot waveguide on silicon. , 2006, Optics letters.

[40]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[41]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[42]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.