Plasmon-assisted photonics at the nanoscale

Plasmons are collective oscillations of electrons that have been exploited in many applications by manipulating and guiding light at resonant frequencies. The transition from understanding the origin and fundamentals of surface plasmon resonance to its many revolutionary applications has been intriguing. Advances in nanofabrication techniques over the last few years have led to variety of applications such as high-resolution plasmon printing, nanoscale waveguides, biodetection at the single-molecule level and enhanced transmission through sub-wavelength apertures, which are all examples of plasmon-assisted nanophotonics. Fundamental aspects of the surface plasmon resonance underlie enticing applications in nanophotonics.

[1]  A. Deshpande,et al.  Tuning luminescence intensity of RHO6G dye using silver nanoparticles , 2008 .

[2]  Modulation of Optical Properties of Gold Nanorods on Addition of KOH , 2007 .

[3]  Harry A Atwater,et al.  The promise of plasmonics , 2007, SIGD.

[4]  Deepti D Deobagkar,et al.  Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. , 2006, Small.

[5]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[6]  J. Lakowicz,et al.  A model for DNA detection by metal-enhanced fluorescence from immobilized silver nanoparticles on solid substrate. , 2006, The journal of physical chemistry. B.

[7]  Sulabha K. Kulkarni,et al.  Nanoshell particles: synthesis, properties and applications , 2006 .

[8]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[9]  Jian Zhang,et al.  Enhanced luminescence of phenyl-phenanthridine dye on aggregated small silver nanoparticles. , 2005, The journal of physical chemistry. B.

[10]  C. Mirkin,et al.  Optically and Chemically Encoded Nanoparticle Materials for DNA and Protein Detection , 2005 .

[11]  José Dintinger,et al.  Enhanced Light Transmission through Subwavelength Holes , 2005 .

[12]  Xingde Li,et al.  Shape-Controlled Synthesis of Silver and Gold Nanostructures , 2005 .

[13]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[14]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[15]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[16]  Joseph Wang Nanomaterial-based electrochemical biosensors. , 2005, The Analyst.

[17]  S. Gosavi,et al.  Optical detection of antibody using silica–silver core–shell particles , 2005 .

[18]  Thomas W. Ebbesen,et al.  The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures , 2005 .

[19]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[20]  Sharon C. Glotzer,et al.  Self‐assembly: From nanoscale to microscale colloids , 2004 .

[21]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[22]  Gerald J. Meyer,et al.  Biological applications of high aspect ratio nanoparticles , 2004 .

[23]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[24]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[25]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[26]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[27]  Yaron Silberberg,et al.  Multiphoton plasmon-resonance microscopy. , 2003, Optics express.

[28]  Mark L Brongersma,et al.  Nanoshells: gifts in a gold wrapper , 2003, Nature materials.

[29]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[30]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[31]  J L West,et al.  A whole blood immunoassay using gold nanoshells. , 2003, Analytical chemistry.

[32]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[33]  Adam D. McFarland,et al.  A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion , 2003 .

[34]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[35]  Younan Xia,et al.  Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. , 2003, The Analyst.

[36]  Shuming Nie,et al.  Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. , 2002, Journal of biomedical optics.

[37]  Ashutosh Chilkoti,et al.  Immobilized gold nanoparticle sensor for label-free optical detection of biomolecular interactions , 2002, SPIE BiOS.

[38]  P. Mulvaney Metal Nanoparticles: Double Layers, Optical Properties, and Electrochemistry , 2002 .

[39]  M. McCall,et al.  The negative index of refraction demystified , 2002, physics/0204067.

[40]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[41]  Ashutosh Chilkoti,et al.  A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. , 2002, Analytical chemistry.

[42]  Alfons van Blaaderen,et al.  Photonic crystals of core-shell colloidal particles , 2002 .

[43]  Alfons van Blaaderen,et al.  Metallodielectric Colloidal Core−Shell Particles for Photonic Applications , 2002 .

[44]  Sergey V. Gaponenko,et al.  Towards 3D photonic crystals , 2001 .

[45]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[46]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[47]  S. Maier,et al.  Plasmon Printing – a New Approach to Near-Field Lithography , 2001 .

[48]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[49]  Paras N. Prasad,et al.  Nanophotonics: Interactions, Materials, and Applications , 2000 .

[50]  R. Whetten,et al.  Near-Infrared Luminescence from Small Gold Nanocrystals , 2000 .

[51]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[52]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[53]  C. Mirkin,et al.  Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides , 2000 .

[54]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[55]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[56]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[57]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[58]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[59]  J. Pendry,et al.  Low frequency plasmons in thin-wire structures , 1998 .

[60]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[61]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[62]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[63]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[64]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[65]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[66]  A. Henglein,et al.  Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate , 1993 .

[67]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[68]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[69]  P. Wyder,et al.  Electronic properties of small metallic particles , 1981 .

[70]  A. Mooradian,et al.  Photoluminescence of Metals , 1969 .

[71]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[72]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .