Atomic Force Microscopy as a Tool Applied to Nano/Biosensors

This review article discusses and documents the basic concepts and principles of nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy (CFM) to study various aspects of architectural and chemical design details of specific molecules and polymers and its influence on the control of chemical interactions between the Atomic Force Microscopy (AFM) tip and the sample. This technique is based on the fabrication of nanomechanical cantilever sensors (NCS) and microcantilever-based biosensors (MC-B), which can provide, depending on the application, rapid, sensitive, simple and low-cost in situ detection. Besides, it can provide high repeatability and reproducibility. Here, we review the applications of CFM through some application examples which should function as methodological questions to understand and transform this tool into a reliable source of data. This section is followed by a description of the theoretical principle and usage of the functionalized NCS and MC-B technique in several fields, such as agriculture, biotechnology and immunoassay. Finally, we hope this review will help the reader to appreciate how important the tools CFM, NCS and MC-B are for characterization and understanding of systems on the atomic scale.

[1]  Zheng You,et al.  Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds. , 2010, Analytica chimica acta.

[2]  A. Passian,et al.  Microcantilever Biosensors , 2007, 2007 IEEE Sensors.

[3]  Guillaume Andre,et al.  Nanoscale imaging of microbial pathogens using atomic force microscopy. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[4]  V. Gold Compendium of chemical terminology , 1987 .

[5]  Cengiz S. Ozkan,et al.  High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding , 2003 .

[6]  Anja Boisen,et al.  Cantilever Sensors: Nanomechanical Tools for Diagnostics , 2009 .

[7]  B. Rogers,et al.  Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array , 2003 .

[8]  Thomas Thundat,et al.  Vapor detection using resonating microcantilevers , 1995 .

[9]  Bonnie J. Tyler,et al.  Investigation of Mussel Adhesive Protein Adsorption on Polystyrene and Poly(octadecyl methacrylate) Using Angle Dependent XPS, ATR-FTIR, and AFM , 1996 .

[10]  Shih-Ming Yang,et al.  On the temperature compensation of parallel piezoresistive microcantilevers in CMOS biosensor , 2008 .

[11]  A.-R. A. Khaleda,et al.  Analysis , control and augmentation of microcantilever deflections in bio-sensing systems , 2003 .

[12]  Takashi Ito,et al.  Chemical-force microscopy for materials characterization , 2010 .

[13]  Neelesh A. Patankar,et al.  On the Modeling of Hydrophobic Contact Angles on Rough Surfaces , 2003 .

[14]  Patrick Hunziker,et al.  An Artificial Nose Based on Microcantilever Array Sensors , 2007 .

[15]  W.P. King,et al.  Modeling Piezoresistive Microcantilever Sensor Response to Surface Stress for Biochemical Sensors , 2008, IEEE Sensors Journal.

[16]  Laura M. Lechuga,et al.  Polymeric cantilever arrays for biosensing applications , 2003 .

[17]  Arun Majumdar,et al.  Label-free protein recognition two-dimensional array using nanomechanical sensors. , 2008, Nano letters.

[18]  Guillaume Andre,et al.  Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells , 2010, Nature communications.

[19]  Charles M. Lieber,et al.  Chemical Force Microscopy , 1997, Microscopy and Microanalysis.

[20]  Chongdu Cho,et al.  Deflection, Frequency, and Stress Characteristics of Rectangular, Triangular, and Step Profile Microcantilevers for Biosensors , 2009, Sensors.

[21]  Achim Hartschuh,et al.  Tip-enhanced near-field optical microscopy. , 2008, Chemical Society reviews.

[22]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[23]  Ian J Burgess,et al.  Microcantilever-based sensors: effect of morphology, adhesion, and cleanliness of the sensing surface on surface stress. , 2007, Analytical chemistry.

[24]  Jennifer Kirkham,et al.  Chemical force microscopy: applications in surface characterisation of natural hydroxyapatite , 2003 .

[25]  Fabio L. Leite,et al.  Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: a review , 2005 .

[26]  Ulrich Mayer,et al.  Analytical evaluation of tapping mode atomic force microscopy for chemical imaging of surfaces , 2001 .

[27]  Martyn C. Davies,et al.  Force sensing and mapping by atomic force microscopy , 2002 .

[28]  Chongdu Cho,et al.  A Study on Increasing Sensitivity of Rectangular Microcantilevers Used in Biosensors , 2008, Sensors.

[29]  Okabe,et al.  Chemical force microscopy of microcontact-printed self-assembled monolayers by pulsed-force-mode atomic force microscopy , 2000, Ultramicroscopy.

[30]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[31]  Yves F Dufrêne,et al.  Direct measurement of hydrophobic forces on cell surfaces using AFM. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[32]  U. Schmidt,et al.  Characterization of Thin Polymer Films on the Nanometer Scale with Confocal Raman AFM , 2005 .

[33]  F. Barth,et al.  Sensors and Sensing in Biology and Engineering , 2003, Springer Vienna.

[34]  Amy E. Childress,et al.  Characterizing NF and RO membrane surface heterogeneity using chemical force microscopy , 2006 .

[35]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[36]  Thomas Thundat,et al.  Glucose biosensor based on the microcantilever. , 2004, Analytical chemistry.

[37]  Qing X. Li,et al.  Detection of copper ions using microcantilever immunosensors and enzyme-linked immunosorbent assay. , 2010, Analytica chimica acta.

[38]  Helmuth Möhwald,et al.  Smart nanocontainers as depot media for feedback active coatings. , 2011, Chemical communications.

[39]  Hans Peter Lang,et al.  Microcantilever sensors. , 2008, Topics in current chemistry.

[40]  J. Thaysen,et al.  Environmental sensors based on micromachined cantilevers with integrated read-out , 2000, Ultramicroscopy.

[41]  Laura M. Lechuga,et al.  Nanomechanical biosensors: a new sensing tool , 2006 .

[42]  C. Ziegler,et al.  A highly sensitive self-oscillating cantilever array for the quantitative and qualitative analysis of organic vapor mixtures , 2006 .

[43]  Il-Hoon Cho,et al.  Selective immobilization of proteins on gold dot arrays and characterization using chemical force microscopy. , 2009, Journal of colloid and interface science.

[44]  Holger Schönherr,et al.  Probing chemical reactions on the nanometer scale: Inverted chemical force microscopy of reactive self-assembled monolayers , 2004 .

[45]  Michel Godin,et al.  Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[46]  J Thaysen,et al.  Optimised cantilever biosensor with piezoresistive read-out. , 2003, Ultramicroscopy.

[47]  Hiroshi Tokumoto,et al.  Analysis of the number of hydrogen bond groups of a multiwalled carbon nanotube probe tip for chemical force microscopy , 2009 .

[48]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[49]  James K. Gimzewski,et al.  An artificial nose based on a micromechanical cantilever array , 1999 .

[50]  Masakazu Aono,et al.  Sub-ppm detection of vapors using piezoresistive microcantilever array sensors , 2009, Nanotechnology.

[51]  R. Warmack,et al.  Multiple-input microcantilever sensors , 2000, Ultramicroscopy.

[52]  Hao Jiang,et al.  Polymer–Silicon Flexible Structures for Fast Chemical Vapor Detection , 2007 .

[53]  T. Thundat,et al.  Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. , 2001, Analytical chemistry.

[54]  Stephan T. Koev,et al.  Interferometric readout of multiple cantilever sensors in liquid samples , 2010 .

[55]  T. Thundat,et al.  Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers , 2003 .

[56]  Fernanda C. Corazza,et al.  Gas sensors development using supercritical fluid technology to detect the ripeness of bananas , 2010 .

[57]  Sandeep Kumar Vashist,et al.  Microcantilevers for Sensing Applications , 2010 .

[58]  Daniel Y. Kwok,et al.  Contact angle measurement and contact angle interpretation , 1999 .

[59]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[60]  Stéphane Cuenot,et al.  Nanoscale mapping and functional analysis of individual adhesins on living bacteria , 2005, Nature Methods.

[61]  X. Richard Zhang,et al.  Development of a biosensor based on laser-fabricatedpolymer microcantilevers , 2004 .

[62]  Thomas Thundat,et al.  Thermal and ambient-induced deflections of scanning force microscope cantilevers , 1994 .

[63]  Holger Schönherr,et al.  Inverted chemical force microscopy: following interfacial reactions on the nanometer scale , 2004 .

[64]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[65]  Vinayak P. Dravid,et al.  Microcantilever resonance-based DNA detection with nanoparticle probes , 2003 .

[66]  Bernard Nysten,et al.  Study of Adhesion Properties of Polypropylene Surfaces by Atomic Force Microscopy Using Chemically Modified Tips : Imaging of Functional Group Distribution , 2001 .

[67]  Tae Song Kim,et al.  Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. , 2009, Biosensors & bioelectronics.

[68]  Panos G. Datskos,et al.  Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films , 2000 .

[69]  Lijie Li,et al.  Recent Development of Micromachined Biosensors , 2011, IEEE Sensors Journal.

[70]  Hao Jiang,et al.  Bimaterial Microcantilevers as a Hybrid Sensing Platform , 2008 .

[71]  Murali Krishna Ghatkesar,et al.  Micromechanical mass sensors for biomolecular detection in a physiological environment. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  F. Fowkes,et al.  DETERMINATION OF INTERFACIAL TENSIONS, CONTACT ANGLES, AND DISPERSION FORCES IN SURFACES BY ASSUMING ADDITIVITY OF INTERMOLECULAR INTERACTIONS IN SURFACES , 1962 .

[73]  Tae Song Kim,et al.  In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid , 2007 .

[74]  Yves F Dufrêne,et al.  Chemical force microscopy of single live cells. , 2007, Nano letters.

[75]  Tao Mu,et al.  Force titration of amino group-terminated self-assembled monolayers of 4-aminothiophenol on gold using chemical force microscopy , 1998 .

[76]  T. Thundat,et al.  Glucose biosensing using an enzyme-coated microcantilever , 2002 .

[77]  Drechsler,et al.  A cantilever array-based artificial nose , 2000, Ultramicroscopy.

[78]  A. Boisen,et al.  Cantilever-like micromechanical sensors , 2011 .

[79]  M. Sepaniak,et al.  Modification of micro-cantilever sensors with sol-gels to enhance performance and immobilize chemically selective phases. , 2000, Talanta.

[80]  Richard A. Venditti,et al.  Chemical force microscopy of cellulosic fibers , 2005 .

[81]  F. J. Boerio,et al.  AFM/FTIR: A New Technique for Materials Characterization , 2008 .