Fabrication of TiO2 nanotubes with extended periodical morphology by alternating-current anodization

Abstract Highly uniform TiO 2 nanotube arrays with regular periodical sidewall morphology were fabricated by both alternating-voltage (AV) and alternating-current (AC) anodization methods. It was revealed that the AC anodization provided a better control to the sidewall morphology than the AV anodization. Various bamboo-shaped nanotube arrays were prepared by using AC anodization with different current functions. Dye-sensitized solar cells (DSSCs) fabricated using different TiO 2 nanotube arrays showed that the AC anodization with square-wave driving current gave the highest photo energy conversion efficiency.

[1]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[2]  A. J. Frank,et al.  General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties. , 2011, ACS nano.

[3]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[4]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[5]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[6]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[7]  P. Schmuki,et al.  Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[8]  Hao‐Li Zhang,et al.  Photoelectrochemical response from CdSe-sensitized anodic oxidation TiO2 nanotubes , 2008 .

[9]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[10]  Kun Liu,et al.  Synthesis of periodically structured titania nanotube films and their potential for photonic applications. , 2011, Small.

[11]  P. Schmuki,et al.  Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. , 2008, Angewandte Chemie.

[12]  Yali Wang,et al.  Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO2 nanorod photoanode , 2009 .

[13]  P. Schmuki,et al.  Self‐organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth , 2010 .

[14]  Somnath C. Roy,et al.  Synthesis and applications of electrochemically self-assembled titania nanotube arrays. , 2010, Physical chemistry chemical physics : PCCP.

[15]  Jun‐Jie Zhu,et al.  Fabrication of double-walled TiO2 nanotubes with bamboo morphology via one-step alternating voltage anodization , 2011 .

[16]  Prashant V. Kamat,et al.  Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures , 2009 .

[17]  Seeram Ramakrishna,et al.  Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell , 2007 .

[18]  Yuanyuan Xie,et al.  Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications , 2011 .

[19]  Jan M. Macak,et al.  Dye-sensitized anodic TiO2 nanotubes , 2005 .

[20]  Wei-min Liu,et al.  A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes , 2009 .

[21]  Taeghwan Hyeon,et al.  Nanorod‐Based Dye‐Sensitized Solar Cells with Improved Charge Collection Efficiency , 2008 .

[22]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[23]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[24]  Kurt D. Benkstein,et al.  Relation between Particle Coordination Number and Porosity in Nanoparticle Films: Implications to Dye-Sensitized Solar Cells , 2001 .

[25]  A. J. Frank,et al.  Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells , 2000 .

[26]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[27]  Jianbo Yin,et al.  Fabrication of multi-sectional TiO2 nanotube arrays by anodization , 2010 .

[28]  Shui-Tong Lee,et al.  Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates , 2010 .

[29]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.