Computation of Time-Periodic Solutions of the Benjamin–Ono Equation

We present a spectrally accurate numerical method for finding nontrivial time-periodic solutions of nonlinear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which in the case of the Benjamin–Ono equation, are the mean, a spatial phase, a temporal phase, and the real part of one of the Fourier modes at t=0.We use our method to study global paths of nontrivial time-periodic solutions connecting stationary and traveling waves of the Benjamin–Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached. By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODEs governing the evolution of solitons using the ansatz suggested by the numerical simulations.

[1]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[2]  A. Acrivos,et al.  Solitary internal waves in deep water , 1967, Journal of Fluid Mechanics.

[3]  Ioannis G. Kevrekidis,et al.  Bifurcations and pattern formation in the "regularized" Kuramoto-Sivashinsky equation , 1992 .

[4]  S. Lang Complex Analysis , 1977 .

[5]  Athanassios S. Fokas,et al.  The Inverse Scattering Transform for the Benjamin‐Ono Equation—A Pivot to Multidimensional Problems , 1983 .

[6]  Jon Wilkening,et al.  An algorithm for computing Jordan chains and inverting analytic matrix functions , 2007 .

[7]  P. Blanchard,et al.  Dynamics and Processes , 1983 .

[8]  A system of nonlinear algebraic equations connected with the multisoliton solution of the Benjamin–Ono equation , 2004 .

[9]  Paul H. Rabinowitz,et al.  Periodic Solutions of Hamiltonian Systems: A Survey , 1982 .

[10]  C. V. Pao,et al.  Numerical Methods for Time-Periodic Solutions of Nonlinear Parabolic Boundary Value Problems , 2001, SIAM J. Numer. Anal..

[11]  J. Duistermaat Bifurcations of periodic solutions near equilibrium points of Hamiltonian systems , 1984 .

[12]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[13]  Hansjörg Kielhöfer,et al.  Bifurcation theory : an introduction with applications to PDEs , 2004 .

[14]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[15]  Paul H. Rabinowitz,et al.  Periodic solutions of hamiltonian systems , 1978 .

[16]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[17]  Pavel I. Plotnikov,et al.  Standing Waves on an Infinitely Deep Perfect Fluid Under Gravity , 2005 .

[18]  J. Ginibre,et al.  Smoothing properties and existence of solutions for the generalized Benjamin-Ono equation , 1991 .

[19]  K. Case Meromorphic solutions of the Benjamin-Ono equation , 1979 .

[20]  E. Zehnder Periodic solutions of hamiltonian equations , 1983 .

[21]  Annalisa Crannell,et al.  The Existence of Many Periodic Non-travelling Solutions to the Boussinesq Equation , 1996 .

[22]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[23]  J. Toland,et al.  Uniqueness and related analytic properties for the Benjamin-Ono equation —a nonlinear Neumann problem in the plane , 1991 .

[24]  Jon Wilkening,et al.  Global paths of time-periodic solutions of the Benjamin–Ono equation connecting pairs of traveling waves , 2008, 0811.4205.

[25]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[26]  M. Golubitsky,et al.  Singularities and Groups in Bifurcation Theory: Volume I , 1984 .

[27]  J. Satsuma,et al.  Periodic Wave and Rational Soliton Solutions of the Benjamin-Ono Equation , 1979 .

[28]  William E. Schiesser,et al.  Kuramoto–Sivashinsky Equation , 2011 .

[29]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[30]  D. Garling,et al.  Algebra, Volume 1 , 1969, Mathematical Gazette.

[31]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[32]  Terence Tao,et al.  GLOBAL WELL-POSEDNESS OF THE BENJAMIN–ONO EQUATION IN H1(R) , 2004 .

[33]  Y. Matsuno New Representations of Multiperiodic and Multisoliton Solutions for a Class of Nonlocal Soliton Equations , 2004 .

[34]  Haim Brezis,et al.  Periodic solutions of nonlinear vibrating strings and duality principles , 1983 .

[35]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[36]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[37]  J. Wilkening,et al.  Time-periodic solutions of the Benjamin-Ono equation , 2008 .

[38]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[39]  Pavel I. Plotnikov,et al.  Nash-Moser Theory for Standing Water Waves , 2001 .

[40]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[41]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[42]  J. Wilkening,et al.  Global paths of time-periodic solutions of the Benjamin-Ono equation connecting arbitrary traveling waves , 2008 .

[43]  K. Case The Benjamin-Ono equation: A remarkable dynamical system , 1980 .

[44]  Hiroaki Ono Algebraic Solitary Waves in Stratified Fluids , 1975 .

[45]  Yoshiyuki Hino,et al.  Almost Periodic Solutions of Differential Equations in Banach Spaces , 2001 .

[46]  T. Benjamin Internal waves of permanent form in fluids of great depth , 1967, Journal of Fluid Mechanics.

[47]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[48]  K. Case The N-soliton solution of the Benjamin-Ono equation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Y Matsuno,et al.  Interaction of the Benjamin-Ono solitons , 1980 .

[50]  Tian Ma,et al.  Bifurcation Theory and Applications , 2005 .

[51]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[52]  Breathers and forced oscillations of nonlinear wave equations on R3. , 1989 .

[53]  Min Chen,et al.  Standing waves for a two-way model system for water waves , 2005 .

[54]  Wang Zhen,et al.  A method for constructing exact solutions and application to Benjamin Ono equation , 2005 .

[55]  David J. Kaup,et al.  The Inverse Scattering Transform for the Benjamin–Ono Equation , 1998 .

[56]  Thomas Y. Hou,et al.  The long-time motion of vortex sheets with surface tension , 1997 .

[57]  R. Glowinski,et al.  A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I): Controllability problem formulation and related iterative solution , 2006 .

[58]  Jon Wilkening,et al.  Computation of symmetric, time-periodic solutions of the vortex sheet with surface tension , 2010, Proceedings of the National Academy of Sciences.

[59]  Global well-posedness of the Benjamin-Ono equation in H^1(R) , 2003, math/0307289.

[60]  R. F. Arenstorf,et al.  PERIODIC SOLUTIONS OF THE RESTRICTED THREE BODY PROBLEM REPRESENTING ANALYTIC CONTINUATIONS OF KEPLERIAN ELLIPTIC MOTIONS. , 1963 .

[61]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[62]  Louis Nirenberg,et al.  Topics in Nonlinear Functional Analysis , 2001 .

[63]  J. Mawhin Periodic solutions of some semilinear wave equations and systems: a survey , 1995 .

[64]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[65]  Ricardo Rosa,et al.  Chaos for a damped and forced KdV equation , 2004 .

[66]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[67]  G. J. Cooper,et al.  Additive Runge-Kutta methods for stiff ordinary differential equations , 1983 .

[68]  S. Dobrokhotov,et al.  Multi-phase solutions of the Benjamin-Ono equation and their averaging , 1991 .

[69]  R. Glowinski,et al.  Controllability Methods for the Computation of Time-Periodic Solutions; Application to Scattering , 1998 .

[70]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .