Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries

[1]  Seong‐Jin Park,et al.  Adiponitrile (C6H8N2): A New Bi‐Functional Additive for High‐Performance Li‐Metal Batteries , 2019, Advanced Functional Materials.

[2]  M. Wagemaker,et al.  Efficient Li-Metal Plating/Stripping in Carbonate Electrolytes Using a LiNO3-Gel Polymer Electrolyte, Monitored by Operando Neutron Depth Profiling , 2019, Chemistry of Materials.

[3]  Yuki Yamada,et al.  Advances and issues in developing salt-concentrated battery electrolytes , 2019, Nature Energy.

[4]  Kang Xu,et al.  Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes , 2019, Energy & Environmental Science.

[5]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[6]  Nam-Soon Choi,et al.  Scavenging Materials to Stabilize LiPF6‐Containing Carbonate‐Based Electrolytes for Li‐Ion Batteries , 2018, Advanced materials.

[7]  Chong Yan,et al.  Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries. , 2018, Angewandte Chemie.

[8]  Yayuan Liu,et al.  Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode , 2018, Nature Communications.

[9]  Jiaqi Huang,et al.  Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries , 2018, Angewandte Chemie.

[10]  L. Nazar,et al.  A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide , 2018, Science.

[11]  Shiyou Li,et al.  Compatibility between lithium difluoro (oxalate) borate-based electrolytes and Li1.2Mn0.54Ni0.13Co0.13O2 cathode for lithium-ion batteries , 2018, Journal of Electroanalytical Chemistry.

[12]  Hongkyung Lee,et al.  High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes , 2018, Joule.

[13]  K. Amine,et al.  Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries , 2018, Nature Nanotechnology.

[14]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[15]  M. Wagemaker,et al.  Operando monitoring the lithium spatial distribution of lithium metal anodes , 2018, Nature Communications.

[16]  Hailiang Wang,et al.  High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes , 2018, Proceedings of the National Academy of Sciences.

[17]  Ji‐Guang Zhang,et al.  High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes , 2018, Advanced materials.

[18]  Ya‐Xia Yin,et al.  A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. , 2018, Angewandte Chemie.

[19]  Minjoon Park,et al.  Prospect and Reality of Ni‐Rich Cathode for Commercialization , 2018 .

[20]  Liumin Suo,et al.  Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries , 2018, Proceedings of the National Academy of Sciences.

[21]  Linda F. Nazar,et al.  An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal , 2017 .

[22]  Jianming Zheng,et al.  Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries , 2017 .

[23]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[24]  L. Nazar,et al.  A facile surface chemistry route to a stabilized lithium metal anode , 2017, Nature Energy.

[25]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[26]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[27]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[28]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[29]  Sung You Hong,et al.  Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries , 2017 .

[30]  Chongwu Zhou,et al.  A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life , 2016, Nano Research.

[31]  Joshua L. Allen,et al.  Importance of Reduction and Oxidation Stability of High Voltage Electrolytes and Additives , 2016 .

[32]  J. Janek,et al.  The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries , 2016 .

[33]  M. Wagemaker,et al.  Direct Observation of Li‐Ion Transport in Electrodes under Nonequilibrium Conditions Using Neutron Depth Profiling , 2015 .

[34]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[35]  Dongmin Im,et al.  A Highly Reversible Lithium Metal Anode , 2014, Scientific Reports.

[36]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[37]  Stefan A. Freunberger,et al.  Li-O2 battery with a dimethylformamide electrolyte. , 2012, Journal of the American Chemical Society.

[38]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[39]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[40]  Mathew D. Halls,et al.  High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives , 2010 .

[41]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[42]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[43]  R. Dedryvère,et al.  Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study , 2007 .

[44]  Doron Aurbach,et al.  Electrode–solution interactions in Li-ion batteries: a short summary and new insights , 2003 .

[45]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[46]  C. Tormena,et al.  Conformational and electronic interaction studies of 2-fluoro-substituted N,N-dimethylacetamides , 2002 .

[47]  R. Kostecki,et al.  Electrochemical and Infrared Studies of the Reduction of Organic Carbonates , 2001 .

[48]  Kristina Edström,et al.  Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite , 2001 .

[49]  Doron Aurbach,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[50]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[51]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[52]  C. Eyermann,et al.  Core-electron binding energies for gaseous atoms and molecules , 1984 .

[53]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[54]  Chunsheng Wang,et al.  Perspective—Fluorinating Interphases , 2018, Journal of The Electrochemical Society.

[55]  B. Lucht,et al.  Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI , 2018 .

[56]  Mengyun Nie,et al.  The Impact of Electrolyte Additives and Upper Cut-off Voltage on the Formation of a Rocksalt Surface Layer in LiNi0.8Mn0.1Co0.1O2 Electrodes , 2017 .

[57]  D. Aurbach,et al.  The Effect of Interactions and Reduction Products of LiNO3, the Anti-Shuttle Agent, in Li-S Battery Systems , 2015 .

[58]  N. Choi,et al.  Effect of Fluoroethylene Carbonate on Electrochemical Performances of Lithium Electrodes and Lithium-Sulfur Batteries , 2013 .

[59]  T. Gustafsson,et al.  A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes , 2009 .

[60]  Doron Aurbach,et al.  The study of electrolyte solutions based on solvents from the “glyme” family (linear polyethers) for secondary Li battery systems , 1997 .

[61]  Robert C. Wolpert,et al.  A Review of the , 1985 .