Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution

We concentrate here on decomposition of 2D objects into meaningfulparts of visual form, orvisual parts. It is a simple observation that convex parts of objects determine visual parts. However, the problem is that many significant visual parts are not convex, since a visual part may have concavities. We solve this problem by identifying convex parts at different stages of a proposed contour evolution method in which significant visual parts will become convex object parts at higher stages of the evolution. We obtain a novel rule for decomposition of 2D objects into visual parts, called the hierarchical convexity rule, which states that visual parts are enclosed by maximal convex (with respect to the object) boundary arcs at different stages of the contour evolution. This rule determines not only parts of boundary curves but directly the visual parts of objects. Moreover, the stages of the evolution hierarchy induce a hierarchical structure of the visual parts. The more advanced the stage of contour evolution, the more significant is the shape contribution of the obtained visual parts.

[1]  Longin Jan Latecki,et al.  Digitizations Preserving Topological and Differential Geometric Properties , 1995, Comput. Vis. Image Underst..

[2]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[3]  Arnold W. M. Smeulders,et al.  Decomposition of discrete curves into piecewise straight segments in linear time , 1991 .

[4]  Ulrich Eckhardt,et al.  Contour-based shape similarity , 1998, Optics & Photonics.

[5]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[6]  Ronen Basri,et al.  Determining the similarity of deformable shapes , 1998, Vision Research.

[7]  Bruce M. Bennett,et al.  Description of solid shape and its inference from occluding contours , 1987 .

[8]  Longin Jan Latecki,et al.  Discrete Approach to Curve Evolution , 1998, DAGM-Symposium.

[9]  MokhtarianFarzin,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992 .

[10]  Robert A. Melter,et al.  Vision Geometry , 1992 .

[11]  J. Koenderink,et al.  The Shape of Smooth Objects and the Way Contours End , 1982, Perception.

[12]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Yoshinori Uesaka A new fourier descriptor applicable to open curves , 1984 .

[14]  Kaleem Siddiqi,et al.  Parts of Visual Form: Computational Aspects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Florica Mindru,et al.  Fully Unsupervised Clustering Using Center-Surround Receptive Fields with Applications to Color-Segmentation , 1997, CAIP.

[16]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Segmentation of Digital Curves , 1995, Int. J. Pattern Recognit. Artif. Intell..

[17]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[18]  Benjamin B. Kimia,et al.  Shocks from images: propagation of orientation elements , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Azriel Rosenfeld,et al.  Supportedness and tameness differentialless geometry of plane curves , 1998, Pattern Recognit..

[20]  Rolf Lakämper,et al.  Manipulation objektbasiert codierter Bilder als Anwendungsbeispiel neuer Videostandards , 1997, DAGM-Symposium.

[21]  Herbert Freeman,et al.  Shape description via the use of critical points , 1978, Pattern Recognit..

[22]  Donald D. Hoffman,et al.  Salience of visual parts , 1997, Cognition.

[23]  K Siddiqi,et al.  Parts of Visual Form: Psychophysical Aspects , 1996, Perception.

[24]  Jan-Olof Eklundh,et al.  Shape Representation by Multiscale Contour Approximation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Longin Jan Latecki,et al.  Contour-Based Shape Similarity , 1999, VISUAL.

[26]  Longin Jan Latecki,et al.  A Realistic Digitization Model of Straight Lines , 1997, Comput. Vis. Image Underst..

[27]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[28]  Wolfgang Förstner,et al.  Model-Based 2D-Shape Recovery , 1995, DAGM-Symposium.

[29]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[30]  John K. Tsotsos,et al.  Shape Representation and Recognition from Multiscale Curvature , 1997, Comput. Vis. Image Underst..

[31]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.