Compositional Model Repositories via Dynamic Constraint Satisfaction with Order-of-Magnitude Preferences

The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude.

[1]  Johan de Kleer,et al.  A General Labeling Algorithm for Assumption-Based Truth Maintenance , 1988, AAAI.

[2]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[3]  Bruce W. Porter,et al.  Automated Modeling of Complex Systems to Answer Prediction Questions , 1997, Artif. Intell..

[4]  Benjamin Kuipers,et al.  A Compositional Modeling Language , 1996 .

[5]  D. Rogers,et al.  Random search and insect population models , 1972 .

[6]  Brian Falkenhainer,et al.  Dynamic Constraint Satisfaction Problems , 1990, AAAI.

[7]  Thomas Schiex,et al.  Solution Reuse in Dynamic Constraint Satisfaction Problems , 1994, AAAI.

[8]  Jeroen Keppens,et al.  Centre for Intelligent Systems and Their Applications on Compositional Modelling on Compositional Modelling on Compositional Modelling* , 2022 .

[9]  Ljup Co Todorovski Declarative Bias in Equation Discovery , 1997 .

[10]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[11]  Brian Falkenhainer,et al.  Dynamic Constraint Satisfaction , 1990 .

[12]  Qiang Shen,et al.  Solution Techniques for Constraint Satisfaction Problems: Advanced Approaches , 2001, Artificial Intelligence Review.

[13]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[14]  A. Ford Modeling the Environment: An Introduction To System Dynamics Modeling Of Environmental Systems , 1999 .

[15]  P. Verhulst Recherches mathématiques sur la loi d’accroissement de la population , 2022, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.

[16]  Qiang Shen,et al.  Solution Techniques for Constraint Satisfaction Problems: Foundations , 2001, Artificial Intelligence Review.

[17]  Saso Dzeroski,et al.  Inducing Process Models from Continuous Data , 2002, ICML.

[18]  Christian Bierwirth,et al.  Principles of Systems , 2000 .

[19]  Jeroen Keppens,et al.  On Supporting Dynamic Constraint Satisfaction with Order of Magnitude Preferences , 2002 .

[20]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[21]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[22]  Jeroen Keppens,et al.  Disaggregation in Compositional Modelling of Ecological Systems via Dynamic Constraint Satisfaction , 2001 .

[23]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[24]  Brian Falkenhainer,et al.  Compositional Modeling: Finding the Right Model for the Job , 1991, Artif. Intell..

[25]  T. Malthus Essay on the Principle of Population , 2001 .

[26]  W. R. Thompson On the Relative Value of Parasites and Predators in the Biological Control of Insect Pests , 1928 .

[27]  Leo Joskowicz,et al.  Efficient Compositional Modeling for Generating Causal Explanations , 1996, Artif. Intell..

[28]  Saso Dzeroski,et al.  Using Domain Knowledge on Population Dynamics Modeling for Equation Discovery , 2001, ECML.

[29]  Peter Struss,et al.  Transformation of Qualitative Dynamic Models - Application in Hydro-Ecology , 1996 .

[30]  Philippe Dague Numeric Reasoning with Relative Orders of Magnitude , 1993, AAAI.

[31]  Qiang Shen,et al.  Hard, flexible and dynamic constraint satisfaction , 1999, The Knowledge Engineering Review.

[32]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[33]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[34]  Philippe Dague Symbolic Reasoning with Relative Orders of Magnitude , 1993, IJCAI.

[35]  Peter Struss,et al.  Diagnosis and Therapy Recognition for Ecosystems - Usage of Model-based Diagnosis Techniques , 1998 .

[36]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[37]  Jeroen Keppens,et al.  Compositional ecological modelling via dynamic constraint satisfaction with order-of-magnitude preferences , 2002 .

[38]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[39]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[40]  Elizabeth Bradley,et al.  Generalized Physical Networks for Automated Model Building , 1999, IJCAI.

[41]  Elizabeth Bradley,et al.  Reasoning about nonlinear system identification , 2001, Artif. Intell..

[42]  Alon Y. Halevy,et al.  Automated Model Selection for Simulation Based on Relevance Reasoning , 1997, Artif. Intell..