A Case of Pathology in Multiobjective Heuristic Search

This article considers the performance of the MOA* multiobjective search algorithm with heuristic information. It is shown that in certain cases blind search can be more efficient than perfectly informed search, in terms of both node and label expansions. A class of simple graph search problems is defined for which the number of nodes grows linearly with problem size and the number of nondominated labels grows quadratically. It is proved that for these problems the number of node expansions performed by blind MOA* grows linearly with problem size, while the number of such expansions performed with a perfectly informed heuristic grows quadratically. It is also proved that the number of label expansions grows quadratically in the blind case and cubically in the informed case.

[1]  Pallab Dasgupta,et al.  Utility of Pathmax in Partial Order Heuristic Search , 1995, Inf. Process. Lett..

[2]  Paolo Dell'Olmo,et al.  On finding dissimilar Pareto-optimal paths , 2005, Eur. J. Oper. Res..

[3]  Duncan A. Campbell,et al.  Multi-Objective Four-Dimensional Vehicle Motion Planning in Large Dynamic Environments , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Dana S. Nau,et al.  An Investigation of the Causes of Pathology in Games , 1982, Artif. Intell..

[5]  Daniele Nardi,et al.  Multi-objective multi-robot surveillance , 2000, 2009 4th International Conference on Autonomous Robots and Agents.

[6]  Lawrence Mandow,et al.  A New Approach to Multiobjective A* Search , 2005, IJCAI.

[7]  Chelsea C. White,et al.  Multiobjective A* , 1991, JACM.

[8]  Ivan Bratko,et al.  When is it better not to look ahead? , 2010, Artif. Intell..

[9]  Dorotea De Luca Cardillo,et al.  A DEA model for the efficiency evaluation of nondominated paths on a road network , 2000, Eur. J. Oper. Res..

[10]  Patrice Perny,et al.  A preference-based approach to spanning trees and shortest paths problems**** , 2005, Eur. J. Oper. Res..

[11]  Ioannis P. Vlahavas,et al.  Multiobjective heuristic state-space planning , 2003, Artif. Intell..

[12]  Vadim Bulitko,et al.  Thinking Too Much: Pathology in Pathfinding , 2008, ECAI.

[13]  Simon Boxnick,et al.  Multiobjective search for the management of a hybrid energy storage system , 2010, 2010 8th IEEE International Conference on Industrial Informatics.

[14]  Lawrence Mandow,et al.  An Empirical Comparison of Some Multiobjective Graph Search Algorithms , 2010, KI.

[15]  Paul Pao-Yen Wu,et al.  On-board multi-objective mission planning for Unmanned Aerial Vehicles , 2009, 2009 IEEE Aerospace conference.

[16]  Patrice Perny,et al.  On preference-based search in state space graphs , 2002, AAAI/IAAI.

[17]  Daniel Vanderpooten,et al.  Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite , 2002, Eur. J. Oper. Res..

[18]  Alberto Martelli,et al.  On the Complexity of Admissible Search Algorithms , 1977, Artif. Intell..

[19]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[20]  M. Zeldin Heuristics! , 2010 .

[21]  Karsten Weihe,et al.  On the cardinality of the Pareto set in bicriteria shortest path problems , 2006, Ann. Oper. Res..

[22]  Patrice Perny,et al.  Choquet-based optimisation in multiobjective shortest path and spanning tree problems , 2010, Eur. J. Oper. Res..

[23]  Lawrence Mandow,et al.  A comparison of heuristic best-first algorithms for bicriterion shortest path problems , 2012, Eur. J. Oper. Res..

[24]  Lawrence Mandow,et al.  Multiobjective A* search with consistent heuristics , 2010, JACM.

[25]  Anind K. Dey,et al.  Fast Planning for Dynamic Preferences , 2008, ICAPS.

[26]  Kyriakos Mouratidis,et al.  Preference queries in large multi-cost transportation networks , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[27]  Patrice Perny,et al.  Search for Compromise Solutions in Multiobjective State Space Graphs , 2006, ECAI.

[28]  Antonio Iovanella,et al.  On the selection of k routes in multiobjective hazmat route planning , 2010 .

[29]  Benjamin Klöpper,et al.  Service Composition with Pareto-Optimality of Time-Dependent QoS Attributes , 2010, ICSOC.

[30]  Olivier Spanjaard,et al.  OWA-Based Search in State Space Graphs with Multiple Cost Functions , 2007, FLAIRS Conference.

[31]  Pallab Dasgupta,et al.  Multiobjective Heuristic Search , 1999, Computational Intelligence.

[32]  Dorothea Wagner,et al.  Pareto Paths with SHARC , 2009, SEA.

[33]  Lawrence Mandow,et al.  Multicriteria heuristic search , 2003, Eur. J. Oper. Res..

[34]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[35]  Lawrence Mandow,et al.  A note on the complexity of some multiobjective A* search algorithms , 2010, ECAI.