Dynamical origin of quantum probabilities

We study the origin of the Born probability rule ρ = |ψ|2 in the de Broglie–Bohm pilot–wave formulation of quantum theory. It is argued that quantum probabilities arise dynamically, and have a status similar to thermal probabilities in ordinary statistical mechanics. This is illustrated by numerical simulations for a two–dimensional system. We show that a simple initial ensemble, with a non–standard distribution ρ ≠ |ψ|2 of particle positions, evolves towards the quantum distribution to high accuracy. The relaxation process ρ→|ψ|2 is quantified in terms of a coarse–grained H–function (equal to minus the relative entropy of ρ with respect to |ψ|2), which is found to decrease approximately exponentially over time, with a time constant that accords with a simple theoretical estimate.

[1]  E. Gaztañaga,et al.  Structure Formation in the Universe , 2003 .

[2]  W. Zurek Environment-assisted invariance, entanglement, and probabilities in quantum physics. , 2002, Physical review letters.

[3]  Farhard Faisal,et al.  DEFINITION OF LYAPUNOV EXPONENTS AND KS ENTROPY IN QUANTUM DYNAMICS , 1995 .

[4]  M. Pettini,et al.  Regular and chaotic quantum motions , 1996 .

[5]  Tomasz Placek,et al.  Non-locality and Modality , 2002 .

[6]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[7]  L. Broglie,et al.  Louis de Broglie, physicien et penseur , 1958 .

[8]  Jonathan J. Halliwell,et al.  Physical origins of time asymmetry , 1995 .

[9]  David Deutsch Quantum theory of probability and decisions , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  D. Dürr,et al.  Quantum mechanics, randomness, and deterministic reality☆ , 1992 .

[11]  Steven F. Savitt Time's Arrows Today: Cosmology and time's arrow , 1995 .

[12]  Detlef Dürr,et al.  Bohmsche Mechanik als Grundlage der Quantenmechanik , 2001 .

[13]  P. Holland,et al.  The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics , 1993 .

[14]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[15]  Henry P. Stapp,et al.  The Undivided Universe: An ontological interpretation of Quantum Theory , 1994 .

[16]  W. Ebeling,et al.  Physical Origins of Time Asymmetry , 1995 .

[17]  R. Parmenter,et al.  Chaotic causal trajectories associated with a single stationary state of a system of noninteracting particles , 1997 .

[18]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[19]  J. P. Vigier,et al.  Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations , 1954 .

[20]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[21]  P. Chattaraj,et al.  The quantum theory of motion and signatures of chaos in the quantum behaviour of a classically chaotic system , 1996 .

[22]  Hans Frisk,et al.  PROPERTIES OF THE TRAJECTORIES IN BOHMIAN MECHANICS , 1997 .

[23]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[24]  K. Berndl,et al.  On the global existence of Bohmian mechanics , 1995, quant-ph/9503013.

[25]  J. Bricmont Chance in physics : foundations and perspectives , 2001 .

[26]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[27]  P. Pearce PRINCIPLES OF STATISTICAL MECHANICS , 1998 .

[28]  Simon Saunders Derivation of the Born rule from operational assumptions , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[30]  Lawrence Sklar,et al.  Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics , 1993 .

[31]  James T. Cushing,et al.  Bohmian mechanics and quantum theory: an appraisal , 1996 .

[32]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[33]  C. Ross Found , 1869, The Dental register.

[34]  R. Schack,et al.  Quantum probability from decision theory? , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  A. Valentini On the pilot-wave theory of classical, quantum and subquantum physics , 1992 .

[36]  R. Parmenter,et al.  DETERMINISTIC CHAOS AND THE CAUSAL INTERPRETATION OF QUANTUM MECHANICS , 1995 .

[37]  A. Valentini Signal-locality, uncertainty, and the subquantum H-theorem. II , 1991 .

[38]  Steven F. Savitt Time's Arrows Today: Recent Physical and Philosophical Work on the Direction of Time , 1997 .

[39]  D. Dürr,et al.  Quantum equilibrium and the origin of absolute uncertainty , 1992, quant-ph/0308039.

[40]  U. Schwengelbeck,et al.  Unified theory of Lyapunov exponents and a positive example of deterministic quantum chaos , 1995 .

[41]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[42]  Antony Valentini Signal-locality in hidden-variables theories , 2002 .

[43]  J. Wheeler,et al.  The Physics of Time Asymmetry , 1974 .

[44]  Antony Valentini,et al.  Signal-locality, uncertainty, and the subquantum H-theorem. I , 1990 .

[45]  Deterministic chaos and the causal interpretation of quantum mechanics (Physics Letters A 201 (1995) 1) , 1996 .

[46]  D. Bohm PROOF THAT PROBABILITY DENSITY APPROACHES //psi//$sup 2$ IN CAUSAL INTERPRETATION OF THE QUANTUM THEORY , 1953 .

[47]  Srikanth Sastry,et al.  Physics and chance. Philosophical issues in the foundations of statistical mechanics , 1995 .

[48]  David Maccallum,et al.  Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony , 1996 .

[49]  J. Keller Bohm's Interpretation of the Quantum Theory in Terms of , 1953 .

[50]  ELECTRONS AND PHOTONS , 1981 .