Loss of centromere function drives karyotype evolution in closely related Malassezia species

Genomic rearrangements associated with speciation often result in chromosome number variation among closely related species. Malassezia species show variable karyotypes ranging between 6 and 9 chromosomes. Here, we experimentally identified all 8 centromeres in M. sympodialis as 3 to 5 kb long kinetochore-bound regions spanning an AT-rich core and depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur with 7 chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with 9 chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred 9-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.

[1]  T. Humphrey,et al.  Homologous recombination and nonhomologous end-joining repair in yeast , 2021, Genome Stability.

[2]  J. Heitman,et al.  Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions , 2019, bioRxiv.

[3]  S. Pushalkar,et al.  The Fungal Mycobiome Promotes Pancreatic Oncogenesis via MBL Activation , 2019, Nature.

[4]  Sanzhen Liu,et al.  Cellular Dynamics and Genomic Identity of Centromeres in Cereal Blast Fungus , 2019, mBio.

[5]  J. Heitman,et al.  Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres , 2019, Current Biology.

[6]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[7]  S. Targan,et al.  Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. , 2019, Cell host & microbe.

[8]  K. Yuen,et al.  Point centromere activity requires an optimal level of centromeric noncoding RNA , 2019, Proceedings of the National Academy of Sciences.

[9]  B. Snel,et al.  Mosaic origin of the eukaryotic kinetochore , 2019, Proceedings of the National Academy of Sciences.

[10]  W. Jung,et al.  Genomic Tandem Quadruplication is Associated with Ketoconazole Resistance in Malassezia pachydermatis. , 2018, Journal of microbiology and biotechnology.

[11]  F. Torres,et al.  Genetic analysis of the Komagataella phaffii centromeres by a color-based plasmid stability assay , 2018, bioRxiv.

[12]  K. Sanyal,et al.  Five pillars of centromeric chromatin in fungal pathogens , 2018, PLoS pathogens.

[13]  S. Henikoff,et al.  Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly. , 2018, Trends in genetics : TIG.

[14]  N. Gilbert,et al.  Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation , 2018, The Journal of cell biology.

[15]  T. Boekhout,et al.  Malassezia ecology, pathophysiology, and treatment. , 2018, Medical mycology.

[16]  Christina A. Cuomo,et al.  RNAi is a critical determinant of centromere evolution in closely related fungi , 2018, Proceedings of the National Academy of Sciences.

[17]  J. Palmer,et al.  Malassezia vespertilionis sp. nov.: a new cold-tolerant species of yeast isolated from bats , 2018, Persoonia.

[18]  J. Heitman,et al.  Erratum for Ianiri et al., “FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia” , 2017, mBio.

[19]  J. Heitman,et al.  FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia , 2017, mBio.

[20]  Christina A. Cuomo,et al.  Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination , 2017, PLoS biology.

[21]  Bogumil J. Karas,et al.  Diatom centromeres suggest a mechanism for nuclear DNA acquisition , 2017, Proceedings of the National Academy of Sciences.

[22]  B. Snel,et al.  Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics , 2017, EMBO reports.

[23]  H. Wösten,et al.  Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. , 2017, Journal of microbiological methods.

[24]  A. Desai,et al.  A Molecular View of Kinetochore Assembly and Function , 2017, Biology.

[25]  Markus S. Schröder,et al.  Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis , 2017, Nucleic acids research.

[26]  Kylie J. Boyce,et al.  Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans , 2017, Current Genetics.

[27]  J. Heitman,et al.  Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus , 2016, mBio.

[28]  Kevin P. Byrne,et al.  Centromeres of the Yeast Komagataella phaffii (Pichia pastoris) Have a Simple Inverted-Repeat Structure , 2016, bioRxiv.

[29]  A. Buscaino,et al.  The Chromatin of Candida albicans Pericentromeres Bears Features of Both Euchromatin and Heterochromatin , 2016, Front. Microbiol..

[30]  R. Siddharthan,et al.  Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis , 2016, PLoS genetics.

[31]  Markus S. Schröder,et al.  Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin , 2015, PLoS genetics.

[32]  E. Stukenbrock,et al.  Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes , 2015, Epigenetics & Chromatin.

[33]  L. Rusche,et al.  Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin , 2015, Proceedings of the National Academy of Sciences.

[34]  Carolin A. Müller,et al.  Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres , 2015, Current Biology.

[35]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[36]  J. Heitman,et al.  Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity in Cryptococcus neoformans , 2014, PLoS genetics.

[37]  Elizabeth A. Grice,et al.  The Skin Microbiome: A Focus on Pathogens and Their Association with Skin Disease , 2014, PLoS pathogens.

[38]  M. Lysak Live and let die: centromere loss during evolution of plant chromosomes , 2014 .

[39]  A. Amend From Dandruff to Deep-Sea Vents: Malassezia-like Fungi Are Ecologically Hyper-diverse , 2014, PLoS pathogens.

[40]  D. Dubey,et al.  Rad51–Rad52 Mediated Maintenance of Centromeric Chromatin in Candida albicans , 2014, PLoS genetics.

[41]  Jiming Jiang,et al.  Maize centromeres expand and adopt a uniform size in the genetic background of oat , 2014, Genome research.

[42]  M. Ochs Gene Function Analysis , 2014, Methods in Molecular Biology.

[43]  B. Contreras-Moreira,et al.  GET_HOMOLOGUES, a Versatile Software Package for Scalable and Robust Microbial Pangenome Analysis , 2013, Applied and Environmental Microbiology.

[44]  J. Heitman,et al.  Ordered Kinetochore Assembly in the Human-Pathogenic Basidiomycetous Yeast Cryptococcus neoformans , 2013, mBio.

[45]  J. Berman,et al.  Monopolin recruits condensin to organize centromere DNA and repetitive DNA sequences , 2013, Molecular biology of the cell.

[46]  L. Wong,et al.  Transcription in the maintenance of centromere chromatin identity , 2012, Nucleic acids research.

[47]  M. Lisby,et al.  Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae , 2012, Yeast.

[48]  J. Heitman,et al.  Malassezia Fungi Are Specialized to Live on Skin and Associated with Dandruff, Eczema, and Other Skin Diseases , 2012, PLoS pathogens.

[49]  S. Saitoh,et al.  Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes , 2012, Current Biology.

[50]  P. Kalitsis,et al.  The evolutionary life cycle of the resilient centromere , 2012, Chromosoma.

[51]  J. Heitman,et al.  Discovery of a Modified Tetrapolar Sexual Cycle in Cryptococcus amylolentus and the Evolution of MAT in the Cryptococcus Species Complex , 2012, PLoS genetics.

[52]  A. Helmrich,et al.  Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. , 2011, Molecular cell.

[53]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[54]  K. Kitagawa,et al.  Endogenous Transcription at the Centromere Facilitates Centromere Activity in Budding Yeast , 2011, Current Biology.

[55]  K. Sanyal,et al.  Diversity in Requirement of Genetic and Epigenetic Factors for Centromere Function in Fungi , 2011, Eukaryotic Cell.

[56]  S. Nasuda,et al.  Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids , 2011, Proceedings of the National Academy of Sciences.

[57]  B. Kerem,et al.  Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. , 2011, Molecular cell.

[58]  Kevin P. Byrne,et al.  Mechanisms of Chromosome Number Evolution in Yeast , 2011, PLoS genetics.

[59]  Yoshinori Watanabe,et al.  Condensin association with histone H2A shapes mitotic chromosomes , 2011, Nature.

[60]  I. Schubert,et al.  Interpretation of karyotype evolution should consider chromosome structural constraints. , 2011, Trends in genetics : TIG.

[61]  Jiming Jiang,et al.  Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. , 2011, Genome research.

[62]  Manolis Kellis,et al.  Comparative Functional Genomics of the Fission Yeasts , 2011, Science.

[63]  C. Martínez-A,et al.  Centromere fission, not telomere erosion, triggers chromosomal instability in human carcinomas , 2011, Carcinogenesis.

[64]  J. Berman,et al.  CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans , 2011, Molecular microbiology.

[65]  Carol Soderlund,et al.  SyMAP v3.4: a turnkey synteny system with application to plant genomes , 2011, Nucleic acids research.

[66]  R. Scott Hansen,et al.  Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site , 2011, Nature.

[67]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[68]  Joachim Messing,et al.  Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. , 2010, Genome research.

[69]  I. Tolic-Nørrelykke,et al.  Laser microsurgery provides evidence for merotelic kinetochore attachments in fission yeast cells lacking Pcs1 or Clr4 , 2010, Cell cycle.

[70]  A. Amon,et al.  The Lrs4-Csm1 monopolin complex associates with kinetochores during anaphase and is required for accurate chromosome segregation , 2010, Cell cycle.

[71]  A. Jauch,et al.  Telomere Disruption Results in Non-Random Formation of De Novo Dicentric Chromosomes Involving Acrocentric Human Chromosomes , 2010, PLoS genetics.

[72]  G. Butler,et al.  Chromosomal G + C Content Evolution in Yeasts: Systematic Interspecies Differences, and GC-Poor Troughs at Centromeres , 2010, Genome biology and evolution.

[73]  Jiming Jiang,et al.  Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres , 2010, Chromosoma.

[74]  A. Strunnikov One-hit wonders of genomic instability , 2010, Cell Division.

[75]  C. Martínez-A,et al.  Merotelic attachments and non-homologous end joining are the basis of chromosomal instability , 2010, Cell Division.

[76]  Miriah D. Meyer,et al.  Genome-wide synteny through highly sensitive sequence alignment: Satsuma , 2010, Bioinform..

[77]  William Stafford Noble,et al.  A Three-Dimensional Model of the Yeast Genome , 2010, Nature.

[78]  S. Chan,et al.  Haploid plants produced by centromere-mediated genome elimination , 2010, Nature.

[79]  C. Newbold,et al.  Functional Identification of the Plasmodium Centromere and Generation of a Plasmodium Artificial Chromosome , 2010, Cell host & microbe.

[80]  J. Haber,et al.  Mad2 Prolongs DNA Damage Checkpoint Arrest Caused by a Double-Strand Break via a Centromere-Dependent Mechanism , 2010, Current Biology.

[81]  J. Cigudosa,et al.  Centromere-localized breaks indicate the generation of DNA damage by the mitotic spindle , 2010, Proceedings of the National Academy of Sciences.

[82]  C. Topp,et al.  DNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA , 2010, PLoS genetics.

[83]  S. Henikoff,et al.  Major Evolutionary Transitions in Centromere Complexity , 2009, Cell.

[84]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[85]  James A. Birchler,et al.  Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize[W] , 2009, The Plant Cell Online.

[86]  Lior Pachter,et al.  Fast Statistical Alignment , 2009, PLoS Comput. Biol..

[87]  N. Archidiacono,et al.  Evolutionary new centromeres in primates. , 2009, Progress in molecular and subcellular biology.

[88]  R. Siddharthan,et al.  Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis , 2008, Proceedings of the National Academy of Sciences.

[89]  Y. Hiraoka,et al.  Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction , 2008, Science.

[90]  Rahul Siddharthan,et al.  PhyloGibbs-MP: Module Prediction and Discriminative Motif-Finding by Gibbs Sampling , 2008, PLoS Comput. Biol..

[91]  A. Burt,et al.  Rapid Evolution of Yeast Centromeres in the Absence of Drive , 2008, Genetics.

[92]  C. Freudenreich,et al.  An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. , 2007, Molecular cell.

[93]  H. Nakayashiki,et al.  Evolution and Diversification of RNA Silencing Proteins in Fungi , 2006, Journal of Molecular Evolution.

[94]  Esther Rheinbay,et al.  Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins , 2006, Genome Biology.

[95]  E. Eichler,et al.  Chromosome evolution in eukaryotes: a multi-kingdom perspective. , 2005, Trends in genetics : TIG.

[96]  David J. Chen,et al.  Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. , 2005, Genes & development.

[97]  Erik van Nimwegen,et al.  PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny , 2005, PLoS Comput. Biol..

[98]  Geert J. P. L. Kops,et al.  On the road to cancer: aneuploidy and the mitotic checkpoint , 2005, Nature Reviews Cancer.

[99]  Kevin P. Byrne,et al.  The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. , 2005, Genome research.

[100]  J. Yates,et al.  Molecular analysis of kinetochore architecture in fission yeast , 2005, The EMBO journal.

[101]  Colin N. Dewey,et al.  Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution , 2004, Nature.

[102]  S. Henikoff,et al.  Adaptive evolution of centromere proteins in plants and animals , 2004, Journal of biology.

[103]  M. Baum,et al.  Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[104]  S. Henikoff,et al.  Sequencing of a rice centromere uncovers active genes , 2004, Nature Genetics.

[105]  J. Yates,et al.  A , 2021, Edinburgh medical and surgical journal.

[106]  D. Cimini,et al.  Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms , 2003, Journal of Cell Science.

[107]  M. Takashima,et al.  Description of a New Yeast Species, Malassezia japonica, and Its Detection in Patients with Atopic Dermatitis and Healthy Subjects , 2003, Journal of Clinical Microbiology.

[108]  Austin Burt,et al.  DIVERSIFICATION IN SEXUAL AND ASEXUAL ORGANISMS , 2003, Evolution; international journal of organic evolution.

[109]  S. Cross,et al.  The methylated component of the Neurospora crassa genome , 2003, Nature.

[110]  G. Goshima,et al.  Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway , 2003, The Journal of cell biology.

[111]  M. Yanagida,et al.  A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. , 2003, Molecular cell.

[112]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[113]  M. Löbrich,et al.  Efficient Rejoining of Radiation-induced DNA Double-strand Breaks in Centromeric DNA of Human Cells* , 2002, The Journal of Biological Chemistry.

[114]  G. Euskirchen,et al.  Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a New Group of Proteins Important for Chromosome Segregation in Saccharomyces cerevisiae , 2002, Eukaryotic Cell.

[115]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[116]  Alexey Khodjakov,et al.  Merotelic Kinetochore Orientation Is a Major Mechanism of Aneuploidy in Mitotic Mammalian Tissue Cells , 2001, The Journal of cell biology.

[117]  George Iliakis,et al.  Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group , 2001, Oncogene.

[118]  D. Magliano,et al.  A 330 kb CENP‐A binding domain and altered replication timing at a human neocentromere , 2001, The EMBO journal.

[119]  S. Diekmann,et al.  Interaction of yeast kinetochore proteins with centromere-protein/transcription factor Cbf1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[120]  D. Senczek,et al.  Characterization of Malassezia species by means of phenotypic characteristics and detection of electrophoretic karyotypes by pulsed‐field gel electrophoresis (PFGE) , 1999, Mycoses.

[121]  G. Goshima,et al.  Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. , 1999, Genes & development.

[122]  T. Boekhout,et al.  Molecular typing of Malassezia species with PFGE and RAPD. , 1998, Medical mycology.

[123]  M. Baum,et al.  Replication of centromere II of Schizosaccharomyces pombe , 1995, Molecular and cellular biology.

[124]  D. Eastmond,et al.  Detection of chromosomal breakage in the 1cen-1q12 region of interphase human lymphocytes using multicolor fluorescence in situ hybridization with tandem DNA probes. , 1995, Cancer research.

[125]  M. Baum,et al.  The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. , 1994, Molecular biology of the cell.

[126]  T. Boekhout,et al.  Karyotyping of Malassezia Yeasts: Taxonomic and Epidemiological Implications , 1994 .

[127]  C. Newlon,et al.  Replication forks pause at yeast centromeres , 1992, Molecular and cellular biology.

[128]  O. Niwa,et al.  A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. , 1992, Molecular biology of the cell.

[129]  D C Ward,et al.  Origin of human chromosome 2: an ancestral telomere-telomere fusion. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[130]  M. Baum,et al.  Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences , 1990, Molecular and cellular biology.

[131]  Tomohiro Matsumoto,et al.  Composite motifs and repeat symmetry in S. pombe centromeres: Direct analysis by integration of Notl restriction sites , 1989, Cell.

[132]  L. Clarke,et al.  Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs , 1982, Cell.

[133]  J. Yunis,et al.  The origin of man: a chromosomal pictorial legacy. , 1982, Science.

[134]  John Carbon,et al.  Isolation of a yeast centromere and construction of functional small circular chromosomes , 1980, Nature.

[135]  B. Mcclintock,et al.  The Stability of Broken Ends of Chromosomes in Zea Mays. , 1941, Genetics.