MLP-Deficient Mice Exhibit a Disruption of Cardiac Cytoarchitectural Organization, Dilated Cardiomyopathy, and Heart Failure

[1]  G. Hutchins,et al.  The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. , 1994, Journal of the American College of Cardiology.

[2]  P. Caroni,et al.  Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. , 1996, Genes & development.

[3]  R. Evans,et al.  Retinoid-dependent pathways suppress myocardial cell hypertrophy. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Chien,et al.  Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  D. Simpson,et al.  Contractile activity and cell-cell contact regulate myofibrillar organization in cultured cardiac myocytes , 1993, The Journal of cell biology.

[6]  S. Liebhaber,et al.  Human cysteine-rich protein. A member of the LIM/double-finger family displaying coordinate serum induction with c-myc. , 1992, The Journal of biological chemistry.

[7]  R. Toyama,et al.  LIM domain proteins. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[8]  R. Lefkowitz,et al.  Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. , 1995, Science.

[9]  H. Heng,et al.  Mapping of a human LIM protein (CLP) to human chromosome 11p15.1 by fluorescence in situ hybridization. , 1995, Genomics.

[10]  M. Beckerle,et al.  Biochemical and molecular characterization of the chicken cysteine-rich protein, a developmentally regulated LIM-domain protein that is associated with the actin cytoskeleton , 1994, The Journal of cell biology.

[11]  P. Caroni,et al.  Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation , 1994, Cell.

[12]  M. Sanguinetti,et al.  Molecular Genetic Insights into Cardiovascular Disease , 1996, Science.

[13]  F. Grinnell,et al.  Fibroblasts, myofibroblasts, and wound contraction , 1994, The Journal of cell biology.

[14]  P. Caroni,et al.  Phosphorylation-site mutagenesis of the growth-associated protein GAP- 43 modulates its effects on cell spreading and morphology , 1993, The Journal of cell biology.

[15]  Y. Yazaki,et al.  Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. , 1995, Journal of molecular and cellular cardiology.

[16]  A. P. Soler,et al.  N-cadherin involvement in cardiac myocyte interaction and myofibrillogenesis. , 1994, Developmental biology.

[17]  K. Chien,et al.  Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen. , 1988, The Journal of biological chemistry.

[18]  Christine E. Seidman,et al.  α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere , 1994, Cell.

[19]  J. Ross,et al.  Transthoracic echocardiography in models of cardiac disease in the mouse. , 1996, Circulation.

[20]  Geraedts Jp Methods in molecular genetics , 1987 .

[21]  S. Coughlin,et al.  Idiopathic dilated cardiomyopathy. , 1994, The New England journal of medicine.

[22]  P. Doevendans,et al.  [26]Molecular analysis of cardiac muscle diseases based on mouse genetics , 1996 .

[23]  D. Srivastava,et al.  Molecular Pathways Controlling Heart Development , 1996, Science.

[24]  Z. Kam,et al.  The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. , 1992, Development.

[25]  T. Rabbitts,et al.  The LIM domain: a new structural motif found in zinc-finger-like proteins. , 1994, Trends in genetics : TIG.

[26]  K. Chien,et al.  Genes and physiology: molecular physiology in genetically engineered animals. , 1996, The Journal of clinical investigation.