The Approximate Solution of Defining Equations for Generalized Turning Points
暂无分享,去创建一个
[1] W. Govaerts. Computation of Takens-Bogdanov type bifurcations with arbitrary codimension , 1993 .
[2] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[3] A. Griewank,et al. Characterization and Computation of Generalized Turning Points , 1984 .
[4] R. Seydel. From equilibrium to chaos , 1988 .
[5] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[6] W. Beyn. Numerical methods for dynamical systems , 1991 .
[7] Vladimír Janovský,et al. Numerical applications of equivariant reduction techniques , 1992 .
[8] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[9] H. Schwetlick. Effective methods for computing turning points of curves implicitly defined by nonlinear equations , 1984 .
[10] H. Keller. Lectures on Numerical Methods in Bifurcation Problems , 1988 .
[11] Andreas Griewank,et al. The Calculation of Hopf Points by a Direct Method , 1983 .
[12] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..