Epithelial tissue architecture protects against cancer.

[1]  J. Campisi Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors , 2005, Cell.

[2]  J. Campisi Aging, tumor suppression and cancer: high wire-act! , 2004, Mechanisms of Ageing and Development.

[3]  A. Knudson Hereditary cancer: Two hits revisited , 2005, Journal of Cancer Research and Clinical Oncology.

[4]  N. Komarova,et al.  Initiation of Colorectal Cancer: Where do the Two Hits Hit? , 2004, Cell cycle.

[5]  N. Komarova Does Cancer Solve an Optimization Problem? , 2004, Cell cycle.

[6]  Dominik Wodarz,et al.  The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Tavaré,et al.  Pretumor progression: clonal evolution of human stem cell populations. , 2004, The American journal of pathology.

[8]  T. Enver,et al.  Acute promyelocytic leukemia: where does it stem from? , 2004, Leukemia.

[9]  M. Nowak,et al.  Stochastic Tunnels in Evolutionary Dynamics , 2004, Genetics.

[10]  M. Nowak,et al.  The linear process of somatic evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Steven A Frank,et al.  Stochastic elimination of cancer cells , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Irving L. Weissman,et al.  Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  T. Ley,et al.  High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. , 2003, Blood.

[14]  Anirvan M. Sengupta,et al.  Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. , 2003, Journal of theoretical biology.

[15]  C. Potten,et al.  The small intestine as a model for evaluating adult tissue stem cell drug targets 1 , 2003, Cell proliferation.

[16]  A. Balmain,et al.  Stem-cell hierarchy in skin cancer , 2003, Nature Reviews Cancer.

[17]  Judith Campisi,et al.  Cancer and ageing: rival demons? , 2003, Nature Reviews Cancer.

[18]  Steven A Frank,et al.  Patterns of cell division and the risk of cancer. , 2003, Genetics.

[19]  M. Nowak,et al.  Local Regulation of Homeostasis Favors Chromosomal Instability , 2003, Current Biology.

[20]  S. Frank Somatic Mutation: Early Cancer Steps Depend on Tissue Architecture , 2003, Current Biology.

[21]  Martin A. Nowak,et al.  The role of chromosomal instability in tumor initiation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Kyoung-Mee Kim,et al.  Methylation reveals a niche: stem cell succession in human colon crypts , 2002, Oncogene.

[23]  J. Cairns Somatic stem cells and the kinetics of mutagenesis and carcinogenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Stephen N. Jones,et al.  p53 mutant mice that display early ageing-associated phenotypes , 2002, Nature.

[25]  Christopher S Potten,et al.  The intestinal epithelial stem cell. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[26]  T. Papadopoulos,et al.  Metaplasia, intraepithelial neoplasia and early cancer of the stomach are related to dedifferentiated epithelial cells defined by cytokeratin-7 expression in gastritis , 2001, Virchows Archiv.

[27]  S. Tavaré,et al.  Investigating stem cells in human colon by using methylation patterns , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Potten,et al.  Gut instincts: thoughts on intestinal epithelial stem cells. , 2000, The Journal of clinical investigation.

[29]  S. Halm,et al.  Secretagogue response of goblet cells and columnar cells in human colonic crypts. , 1999, American journal of physiology. Cell physiology.

[30]  T. Ley,et al.  Seed versus soil: the importance of the target cell for transgenic models of human leukemias. , 1999, Blood.

[31]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[32]  J. Cairns,et al.  Mutation and cancer: the antecedents to our studies of adaptive mutation. , 1998, Genetics.

[33]  K. Kinzler,et al.  The Genetic Basis of Human Cancer , 1997 .

[34]  C. Tribioli,et al.  Acute leukemia with promyelocytic features in PML/RARα transgenic mice , 1997 .

[35]  K. Kinzler,et al.  Genetic instability in colorectal cancers , 1997, Nature.

[36]  I. Weissman,et al.  A PMLRARα transgene initiates murine acute promyelocytic leukemia , 1997 .

[37]  T. Ley,et al.  Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. , 1997, Blood.

[38]  E. Macintyre,et al.  Highly purified primitive hematopoietic stem cells are PML-RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. , 1995, Blood.

[39]  R. Albertini,et al.  In vivo somatic mutations in humans: measurement and analysis. , 1990, Annual review of genetics.

[40]  W. Thilly,et al.  A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay. , 1989, Mutation research.

[41]  John Cairns,et al.  Mutation selection and the natural history of cancer , 1975, Nature.