The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development.

In C. elegans, the epithelial Pn.p cells adopt either a vulval precursor cell fate or fuse with the surrounding hypodermis (the F fate). Our results suggest that a Wnt signal transduced through a pathway involving the beta-catenin homolog BAR-1 controls whether P3.p through P8.p adopt the vulval precursor cell fate. In bar-1 mutants, P3.p through P8.p can adopt F fates instead of vulval precursor cell fates. The Wnt/bar-1 signaling pathway acts by regulating the expression of the Hox gene lin-39, since bar-1 is required for LIN-39 expression and forced lin-39 expression rescues the bar-1 mutant phenotype. LIN-39 activity is also regulated by the anchor cell signal/let-23 receptor tyrosine kinase/let-60 Ras signaling pathway. Our genetic and molecular experiments show that the vulval precursor cells can integrate the input from the BAR-1 and LET-60 Ras signaling pathways by coordinately regulating activity of the common target LIN-39 Hox.

[1]  K. Kornfeld,et al.  Vulval development in Caenorhabditis elegans. , 1997, Trends in genetics : TIG.

[2]  H. Horvitz,et al.  Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. , 1985, Genetics.

[3]  Hans Clevers,et al.  Armadillo Coactivates Transcription Driven by the Product of the Drosophila Segment Polarity Gene dTCF , 1997, Cell.

[4]  Bruce Bowerman,et al.  Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm , 1997, Cell.

[5]  S. K. Kim,et al.  lin-31, a Caenorhabditis elegans HNF-3/fork head transcription factor homolog, specifies three alternative cell fates in vulval development. , 1993, Genes & development.

[6]  J. Priess,et al.  A Putative Catenin–Cadherin System Mediates Morphogenesis of the Caenorhabditis elegans Embryo , 1998, The Journal of cell biology.

[7]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[8]  C. Kenyon,et al.  Multiple HOM-C gene interactions specify cell fates in the nematode central nervous system. , 1993, Genes & development.

[9]  E. Hedgecock,et al.  The ncl-1 gene and genetic mosaics of Caenorhabditis elegans. , 1995, Genetics.

[10]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[11]  Stuart K. Kim,et al.  MAP Kinase Signaling Specificity Mediated by the LIN-1 Ets/LIN-31 WH Transcription Factor Complex during C. elegans Vulval Induction , 1998, Cell.

[12]  D. Riddle C. Elegans II , 1998 .

[13]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[14]  Stuart K. Kim,et al.  Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1. , 1998, Genetics.

[15]  P. Sternberg,et al.  The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. , 1990, Genetics.

[16]  P. Sternberg,et al.  Interactions of EGF, Wnt and HOM-C genes specify the P12 neuroectoblast fate in C. elegans. , 1998, Development.

[17]  S. K. Kim,et al.  Signal transduction and cell fate specification during Caenorhabditis elegans vulval development. , 1994, Current opinion in genetics & development.

[18]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[19]  M. Peifer,et al.  The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin , 1990, Cell.

[20]  C. Mello,et al.  Wnt Signaling and an APC-Related Gene Specify Endoderm in Early C. elegans Embryos , 1997, Cell.

[21]  Walter Birchmeier,et al.  Hot papers in cell biology - J. Behrens, J.P. von Kries, M. Kuehl, L. Bruhn, D. Wedlich, R. Grosschedl, W. Birchmeier: "Functional interaction of beta-catenin with the transcription factor LEF-1" - Comments by Walter Birchmeier , 1999 .

[22]  W. Wood The Nematode Caenorhabditis elegans , 1988 .

[23]  R. Waterston,et al.  Muscle cell attachment in Caenorhabditis elegans , 1991, The Journal of cell biology.

[24]  J. Thompson,et al.  Using CLUSTAL for multiple sequence alignments. , 1996, Methods in enzymology.

[25]  Thomas R Clandinin,et al.  Different Levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates , 1995, Cell.

[26]  Sven Berg,et al.  A repeating amino acid motif shared by proteins with diverse cellular roles , 1994, Cell.

[27]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway. , 1995, Genes & development.

[28]  R. Moon,et al.  Synergistic principles of development: overlapping patterning systems in Xenopus mesoderm induction. , 1992, Development.

[29]  H. Horvitz,et al.  A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans , 1987, Nature.

[30]  S. K. Kim,et al.  Mosaic analysis using a ncl-1 (+) extrachromosomal array reveals that lin-31 acts in the Pn.p cells during Caenorhabditis elegans vulval development. , 1996, Genetics.

[31]  C. Hunter,et al.  Specification of anteroposterior cell fates in Caenorhabditis elegans by Drosophila Hox proteins , 1995, Nature.

[32]  Iva Greenwald,et al.  Development of the Vulva , 1997 .

[33]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[34]  R. Nusse,et al.  Wnt signaling: a common theme in animal development. , 1997, Genes & development.

[35]  B. Gumbiner Signal transduction of beta-catenin. , 1995, Current opinion in cell biology.

[36]  H. Horvitz,et al.  Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction , 1990, Nature.

[37]  R. Durbin,et al.  ACeDB and macace. , 1995, Methods in cell biology.

[38]  Stephen W. Byers,et al.  Serine Phosphorylation-regulated Ubiquitination and Degradation of β-Catenin* , 1997, The Journal of Biological Chemistry.

[39]  R. Moon,et al.  A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. , 1997, Genes & development.

[40]  A. Chisholm,et al.  Control of cell fate in the tail region of C. elegans by the gene egl-5. , 1991, Development.

[41]  Jörg Stappert,et al.  β‐catenin is a target for the ubiquitin–proteasome pathway , 1997 .

[42]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[43]  R. Moon,et al.  Signal transduction through beta-catenin and specification of cell fate during embryogenesis. , 1996, Genes & development.

[44]  Paul W. Sternberg,et al.  C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation , 1993, Nature.

[45]  William I. Weis,et al.  Three-Dimensional Structure of the Armadillo Repeat Region of β-Catenin , 1997, Cell.

[46]  Yishi Jin,et al.  Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein , 1994, Nature.

[47]  J. Sulston,et al.  Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. , 1980, Developmental biology.

[48]  J. Olmsted,et al.  Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. , 1981, The Journal of biological chemistry.

[49]  N. Perrimon,et al.  Interaction Between Wingless and Notch Signaling Pathways Mediated by Dishevelled , 1996, Science.

[50]  M. Peifer,et al.  Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. , 1994, Developmental biology.

[51]  Stuart K. Kim,et al.  Sequential signalling during Caenorhabditis elegans vulval induction , 1995 .

[52]  N. Ueno,et al.  BMP-4 regulates the dorsal-ventral differences in FGF/MAPKK-mediated mesoderm induction in Xenopus. , 1995, Developmental biology.

[53]  C. Kenyon,et al.  The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling. , 1998, Development.

[54]  Paul W. Sternberg,et al.  Pattern formation during vulval development in C. elegans , 1986, Cell.

[55]  Gary Ruvkun,et al.  The unc-86 gene product couples cell lineage and cell identity in C. elegans , 1990, Cell.

[56]  P. Sternberg,et al.  Caenorhabditis elegans HOM-C genes regulate the response of vulval precursor cells to inductive signal. , 1997, Developmental biology.

[57]  Andrew D. Chisholm,et al.  Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39 , 1993, Cell.

[58]  C. Kenyon,et al.  A homeotic gene cluster patterns the anteroposterior body axis of C. elegans , 1993, Cell.

[59]  T. Watabe,et al.  Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. , 1995, Genes & development.

[60]  C. Tabin,et al.  Molecular Models for Vertebrate Limb Development , 1997, Cell.

[61]  Paul W. Sternberg,et al.  The gene lin-3 encodes an inductive signal for vulval development in C. elegans , 1992, Nature.

[62]  J. Sulston,et al.  Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. , 1980, Genetics.

[63]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. , 1994, Development.

[64]  P. Sternberg,et al.  Multiple functions of let-23, a Caenorhabditis elegans receptor tyrosine kinase gene required for vulval induction. , 1991, Genetics.

[65]  A. Myers,et al.  High-expression vectors with multiple cloning sites for construction of trpE fusion genes: pATH vectors. , 1991, Methods in enzymology.

[66]  R. Moon,et al.  WNTs modulate cell fate and behavior during vertebrate development. , 1997, Trends in genetics : TIG.

[67]  Mariann Bienz,et al.  LEF-1, a Nuclear Factor Coordinating Signaling Inputs from wingless and decapentaplegic , 1997, Cell.