Clarifying the differences between traditional liquefaction hazard maps and probabilistic liquefaction reference parameter maps

Abstract Traditional liquefaction hazard maps are useful tools for preliminary engineering site assessment and policy development. However, these maps should not be used for site-specific liquefaction hazard assessment. Simplified probabilistic liquefaction analysis procedures can be used instead to perform site-specific liquefaction hazard assessment, but these procedures rely on probabilistic reference parameter maps that are not yet familiar to most engineering and geological practitioners. As a result, some professionals are questioning the differences between traditional liquefaction hazard maps and the new probabilistic reference parameter maps. This paper clarifies the differences between these two types of maps, and shows how each of these maps complements the other. New probabilistic reference parameter maps for liquefaction triggering and lateral spread displacement are developed and presented for San Diego, California, and simplified probabilistic equations necessary to use the reference parameter maps are summarized. An example map-based liquefaction triggering and lateral spread displacement analysis is performed for a representative site near San Diego Bay. Results of the analysis demonstrate that the probabilistic assessment confirms and augments the information conveyed by the traditional liquefaction hazard map.

[1]  Laurie G. Baise,et al.  Spatial variability of liquefaction potential in regional mapping using CPT and SPT data , 2007 .

[2]  M. Olsen,et al.  Lateral Spread Hazard Mapping of the Northern Salt Lake Valley, Utah, for a M7.0 Scenario Earthquake , 2007 .

[3]  Armen Der Kiureghian,et al.  STANDARD PENETRATION TEST-BASED PROBABILISTIC AND DETERMINISTIC ASSESSMENT OF SEISMIC SOIL LIQUEFACTION POTENTIAL , 2004 .

[4]  Michael J. Bennett,et al.  Liquefaction Hazard Mapping with LPI in the Greater Oakland, California, Area , 2006 .

[5]  Ross W. Boulanger,et al.  Probabilistic Standard Penetration Test-Based Liquefaction-Triggering Procedure , 2012 .

[6]  Roy T Mayfield,et al.  The return period of soil liquefaction , 2007 .

[7]  I. M. Idriss,et al.  SIMPLIFIED PROCEDURE FOR EVALUATING SOIL LIQUEFACTION POTENTIAL , 1971 .

[8]  Kevin W. Franke,et al.  Simplified Procedure for the Performance-Based Prediction of Lateral Spread Displacements , 2016 .

[9]  Ross W. Boulanger,et al.  CPT-Based Liquefaction Triggering Procedure , 2016 .

[10]  Laurie G. Baise,et al.  Liquefaction Hazard Mapping—Statistical and Spatial Characterization of Susceptible Units , 2006 .

[11]  T. Leslie Youd,et al.  Mapping of Liquefaction Severity Index , 1987 .

[12]  E. Reinoso,et al.  Regional map of earthquake-induced liquefaction hazard using the lateral spreading displacement index DLL , 2015, Natural Hazards.

[13]  C. Allin Cornell,et al.  Ground-Motion Amplification in Nonlinear Soil Sites with Uncertain Properties , 2004 .

[14]  E. Rathje,et al.  Estimating Fully Probabilistic Seismic Sliding Displacements of Slopes from a Pseudoprobabilistic Approach , 2011 .

[15]  Jack W. Baker,et al.  Liquefaction Risk Assessment Using Geostatistics to account for Soil Spatial Variability , 2008 .

[16]  Kevin W. Franke,et al.  Simplified Uniform Hazard Liquefaction Analysis for Bridges , 2014 .

[17]  Brendon A. Bradley,et al.  Probabilistic pseudo-static analysis of pile foundations in liquefiable soils , 2011 .

[18]  Charles S. Mueller,et al.  Documentation for the 2008 update of the United States National Seismic Hazard Maps , 2008 .

[19]  S. Harmsen,et al.  Documentation for the 2002 update of the national seismic hazard maps , 2002 .

[20]  Candan Gokceoglu,et al.  A liquefaction severity index suggested for engineering practice , 2005 .

[21]  Scott J. Brandenberg,et al.  Fragility Functions for Bridges in Liquefaction-Induced Lateral Spreads , 2011 .

[22]  T L Youd,et al.  MAPPING LIQUEFACTIONINDUCED GROUND FAILURE POTENTIAL , 1978 .

[23]  Steven L. Kramer,et al.  Procedure for the Empirical Evaluation of Lateral Spread Displacement Hazard Curves , 2014 .

[24]  Jonathan D. Bray,et al.  Probabilistic Performance-Based Procedure to Evaluate Pile Foundations at Sites with Liquefaction-Induced Lateral Displacement , 2010 .

[25]  S. Kramer Geotechnical Earthquake Engineering , 1996 .

[26]  Chih-Sheng Ku,et al.  A study of the liquefaction risk potential at Yuanlin, Taiwan , 2004 .

[27]  Jonathan P. Stewart,et al.  Amplification Factors for Spectral Acceleration in Tectonically Active Regions , 2003 .

[28]  J. David Frost,et al.  Spatial Liquefaction Analysis System , 1998 .

[29]  Steven F. Bartlett,et al.  Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement , 2002 .

[30]  Zhuzhao Liu,et al.  Simplified Procedure for Developing Joint Distribution of amax and Mw for Probabilistic Liquefaction Hazard Analysis , 2008 .

[31]  Kevin W. Franke,et al.  Comparative Study between Two Performance-Based Liquefaction Triggering Models for the Standard Penetration Test , 2014 .

[32]  Gokhan Saygili,et al.  Probabilistic Seismic Hazard Analysis for the Sliding Displacement of Slopes: Scalar and Vector Approaches , 2008 .

[33]  W. F. Marcuson,et al.  Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils , 2001 .

[34]  Kristin J. Ulmer,et al.  Modified Performance-Based Liquefaction Triggering Procedure Using Liquefaction Loading Parameter Maps , 2016 .

[35]  Glenn J. Rix,et al.  Probabilistic Liquefaction Hazard Maps for Memphis, Tennessee , 2008 .