A multiprocessor-based fully digital control architecture for permanent magnet synchronous motor drives

The design part is concerned with the formulation of control algorithms for current-regulated pulsewidth modulated inverter and advanced vector control strategies for speed- and position-loop. The implementational part integrates the control of current-, speed-, and position-loop using the multiprocessor-based controller. Experimental case studies that correlated simulation and measurement results are provided

[1]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[2]  H. Kwakernaak Minimax frequency domain performance and robustness optimization of linear feedback systems , 1985 .

[3]  Hirofumi Akagi,et al.  A Novel Control Scheme for Current-Controlled PWM Inverters , 1986, IEEE Transactions on Industry Applications.

[4]  Michel Lajoie-Mazenc,et al.  Study and Implementation of Hysteresis Controlled Inverter on a Permanent Magnet Synchronous Machine , 1985, IEEE Transactions on Industry Applications.

[5]  Guy R. L. Sohie,et al.  A digital signal processor with IEEE floating-point arithmetic , 1988, IEEE Micro.

[6]  W. Leonhard,et al.  Microcomputer control of high dynamic performance ac-drives - A survey , 1986, Autom..

[7]  Hirofumi Akagi,et al.  A High Performance AC Servo System with Permanent Magnet Synchronous Motors , 1986, IEEE Transactions on Industrial Electronics.

[8]  A. F. Wick,et al.  Design and Experimental Results of a Brushless AC Servo Drive , 1984, IEEE Transactions on Industry Applications.

[9]  S.R. MacMinn,et al.  Control techniques for improved high-speed performance of interior PM synchronous motor drives , 1988, Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting.

[10]  R.S. Colby Classification of inverter driven permanent magnet synchronous motors , 1988, Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting.

[11]  Donald W. Novotny,et al.  Current Control of VSI-PWM Inverters , 1985, IEEE Transactions on Industry Applications.

[12]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[13]  Paolo Tenti,et al.  A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency , 1990 .

[14]  W. Schumacher,et al.  Microprocessor-Controlled AC-Servo Drives with Synchronous or Induction Motors: Which is Preferable? , 1986, IEEE Transactions on Industry Applications.

[15]  Alberto J. Pollmann,et al.  Software Pulsewidth Modulation for μP Control of AC Drives , 1986, IEEE Transactions on Industry Applications.

[16]  Tian-Hua Liu,et al.  Microprocessor-based controller design and simulation for a permanent magnet synchronous motor drive , 1988 .

[17]  I. Postlethwaite,et al.  Industrial control system design using H∞ optimization , 1986, 1986 25th IEEE Conference on Decision and Control.

[18]  R. Krishnan Selection Criteria for Servo Motor Drives , 1987, IEEE Transactions on Industry Applications.

[19]  G. Zames,et al.  On H ∞ -optimal sensitivity theory for SISO feedback systems , 1984 .

[20]  P. Dalton,et al.  Current control of induction motors at low speeds , 1988, Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting.

[21]  D. N. Limebeer,et al.  H ∞ optimal control of a synchronous turbo-generator , 1986 .

[22]  Dante C. Youla,et al.  Modern Wiener--Hopf design of optimal controllers Part I: The single-input-output case , 1976 .

[23]  Panos Papamichalis,et al.  The TMS320C30 floating-point digital signal processor , 1988, IEEE Micro.

[24]  Bimal K. Bose,et al.  Technology trends in microcomputer control of electrical machines , 1988 .