Versatile algorithms for the computation of 2-point spatial correlations in quantifying material structure

This paper presents a generalized framework along with the associated computational strategies for a rigorous quantification of the material structure in a range of different applications using the framework of 2-point spatial correlations. In particular, we focus on applications requiring different assumptions about the periodicity and/or involving irregular domain shapes and potentially extremely large datasets. Important details of the computational algorithms needed to address these challenges are developed and illustrated with example case studies. Algorithms developed and presented in this work are available at http://dx.doi.org/https://doi.org/10.5281/zenodo.31329.

[1]  Andrzej L. Wojcieszynski,et al.  A discussion of the effect of inclusion volume fraction on the toughness of steel , 2007 .

[2]  S. Torquato,et al.  Reconstructing random media , 1998 .

[3]  Yukitaka Murakami,et al.  Effects of Nonmetallic Inclusions on Fatigue Strength , 2002 .

[4]  Farrokh Mistree,et al.  Plasticity-Related Microstructure-Property Relations for Materials Design , 2007 .

[5]  S. Kalidindi,et al.  Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data , 2013, Integrating Materials and Manufacturing Innovation.

[6]  A. Rollett,et al.  Texture clustering and long-range disorientation representation methods: application to 6022 aluminum sheet , 2002 .

[7]  William Fuller Brown,et al.  Solid Mixture Permittivities , 1955 .

[8]  Hamid Garmestani,et al.  Quantitative prediction of effective conductivity in anisotropic heterogeneous media using two-point correlation functions , 2006 .

[9]  Yuksel C. Yabansu,et al.  Understanding and visualizing microstructure and microstructure variance as a stochastic process , 2011 .

[10]  S. Ahzi,et al.  Statistical continuum theory for large plastic deformation of polycrystalline materials , 2001 .

[11]  Surya R. Kalidindi,et al.  Representation and calibration of elastic localization kernels for a broad class of cubic polycrystals , 2015 .

[12]  S. Kalidindi,et al.  Estimating the response of polycrystalline materials using sets of weighted statistical volume elements , 2012 .

[13]  Surya R. Kalidindi,et al.  Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets , 2015, Nanotechnology.

[14]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[15]  M. Khaleel,et al.  Three-dimensional reconstruction and homogenization of heterogeneous materials using statistical correlation functions and FEM , 2012 .

[16]  Brent L. Adams,et al.  Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure , 1996 .

[17]  Surya R. Kalidindi,et al.  Calibrated localization relationships for elastic response of polycrystalline aggregates , 2014 .

[19]  David T. Fullwood,et al.  A new spectral framework for establishing localization relationships for elastic behavior of composites and their calibration to finite-element models , 2008 .

[20]  Boris Iwanschitz,et al.  Quantitative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for Solid Oxide Fuel Cells , 2011 .

[21]  Kurt D. Benkstein,et al.  Relation between Particle Coordination Number and Porosity in Nanoparticle Films: Implications to Dye-Sensitized Solar Cells , 2001 .

[22]  A. Rollett,et al.  Stress hot spots in viscoplastic deformation of polycrystals , 2010 .

[23]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[24]  Dennis M. Dimiduk,et al.  The role of grain size and selected microstructural parameters in strengthening fully lamellar TiAl alloys , 1998 .

[25]  David Svoboda Efficient Computation of Convolution of Huge Images , 2011, ICIAP.

[26]  Rajen Dinesh Shah,et al.  Statistical modelling , 2015 .

[27]  T. A. Mason,et al.  Use of microstructural statistics in predicting polycrystalline material properties , 1999 .

[28]  David T. Fullwood,et al.  Elastic properties closures using second-order homogenization theories: Case studies in composites of two isotropic constituents , 2006 .

[29]  Surya R. Kalidindi,et al.  Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials , 2015 .

[30]  D. Fullwood,et al.  Delineation of the space of 2-point correlations in a composite material system , 2008 .

[31]  David L. McDowell,et al.  Dependence of mechanical properties on crystal orientation of semi-crystalline polyethylene structures , 2014 .

[32]  Xin Sun,et al.  Three-phase solid oxide fuel cell anode microstructure realization using two-point correlation functions , 2011 .

[33]  H. R. Anderson,et al.  Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application , 1957 .

[34]  H. Garmestani,et al.  Microstructure design of a two phase composite using two-point correlation functions , 2004 .

[35]  Surya R. Kalidindi,et al.  Chapter 18 – Microstructure Informatics , 2013 .

[36]  Graeme W. Milton,et al.  Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics , 2003 .

[37]  Surya R. Kalidindi,et al.  Microstructure Informatics Using Higher-Order Statistics and Efficient Data-Mining Protocols , 2011 .

[38]  J. Lankford E) Effect of oxide inclusions on fatigue failure , 1977 .

[39]  Michael Angelo B. Promentilla,et al.  Quantification of Tortuosity in Hardened Cement Pastes using Synchrotron-based X-ray Computed Microtomography , 2009 .

[40]  J. A. Charles,et al.  Inclusion deformation and toughness anisotropy in hot-rolled steels , 1976 .

[41]  A. M. Bueche,et al.  Scattering by an Inhomogeneous Solid , 1949 .

[42]  Dong Nyung Lee,et al.  A study on the microstructure and phase transformation of electroless nickel deposits , 1988 .

[43]  W. Gao,et al.  Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites , 2012 .

[44]  Surya R. Kalidindi,et al.  A data-driven approach to establishing microstructure–property relationships in porous transport layers of polymer electrolyte fuel cells , 2014 .

[45]  Brent L. Adams,et al.  The mesostructure—properties linkage in polycrystals , 1998 .

[46]  Daniel Balzani,et al.  Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions , 2011 .

[47]  D. Fullwood,et al.  Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .

[48]  Johannes Hötzer,et al.  Analytics for microstructure datasets produced by phase-field simulations , 2016 .

[49]  Microstructural analysis of the radial distribution function for liquid and amorphous Al , 2003 .

[50]  Surya R. Kalidindi,et al.  3-D Microstructure Analysis of Fuel Cell Materials: Spatial Distributions of Tortuosity, Void Size and Diffusivity , 2012 .

[51]  Joseph Zarka,et al.  Modelling small deformations of polycrystals , 1986 .

[52]  David T. Fullwood,et al.  A strong contrast homogenization formulation for multi-phase anisotropic materials , 2008 .

[53]  A. Gokhale,et al.  Image based computations of lineal path probability distributions for microstructure representation , 2008 .

[54]  D. Fullwood,et al.  Microstructure reconstructions from 2-point statistics using phase-recovery algorithms , 2008 .

[55]  A. Gokhale,et al.  Effective Elastic Properties of an Al‐SiC Composite Using Two‐point Statistical Mechanics Approach , 2004 .

[56]  Hakobyan Yeranuhi,et al.  Random Heterogeneous Materials , 2008 .

[57]  Surya R. Kalidindi,et al.  Structure–property linkages using a data science approach: Application to a non-metallic inclusion/steel composite system , 2015 .

[58]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[59]  Surya R. Kalidindi,et al.  Workflow for integrating mesoscale heterogeneities in materials structure with process simulation of titanium alloys , 2014, Integrating Materials and Manufacturing Innovation.

[60]  S. Kalidindi,et al.  Finite approximations to the second-order properties closure in single phase polycrystals , 2005 .

[61]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[62]  Surya R. Kalidindi,et al.  Selection of representative volume elements for pore-scale analysis of transport in fuel cell materials , 2012 .

[63]  A. Gokhale,et al.  Constraints on microstructural two-point correlation functions , 2005 .

[64]  David T. Fullwood,et al.  Microstructure Sensitive Design for Performance Optimization , 2012 .

[65]  Easo P George,et al.  Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy , 2005 .

[66]  John Hinde,et al.  Statistical Modelling in R , 2009 .

[67]  D. Fullwood,et al.  Gradient-based microstructure reconstructions from distributions using fast Fourier transforms , 2008 .