Verification of Many-Qubit States

Verification is a task to check whether a given quantum state is close to an ideal state or not. In this paper, we show that a variety of many-qubit quantum states can be verified with only sequential single-qubit measurements of Pauli operators. First, we introduce a protocol for verifying ground states of Hamiltonians. We next explain how to verify quantum states generated by a certain class of quantum circuits. We finally propose an adaptive test of stabilizers that enables the verification of all polynomial-time-generated hypergraph states, which include output states of the Bremner-Montanaro-Shepherd-type instantaneous quantum polynomial time (IQP) circuits. Importantly, we do not make any assumption that the identically and independently distributed copies of the same states are given: Our protocols work even if some highly complicated entanglement is created among copies in any artificial way. As applications, we consider the verification of the quantum computational supremacy demonstration with IQP models, and verifiable blind quantum computing.

[1]  Graeme Smith,et al.  Quantum de Finetti Theorem under Fully-One-Way Adaptive Measurements. , 2014, Physical review letters.

[2]  Tomoyuki Morimae,et al.  Topologically protected measurement-based quantum computation on the thermal state of a nearest-neighbor two-body Hamiltonian with spin-3/2 particles , 2011, 1111.0919.

[3]  L. Duan,et al.  Quantum Supremacy for Simulating a Translation-Invariant Ising Spin Model. , 2016, Physical review letters.

[4]  Masahito Hayashi,et al.  Verification of hypergraph states , 2017 .

[5]  M. Bremner,et al.  Instantaneous Quantum Computation , 2008, 0809.0847.

[6]  J. Eisert,et al.  Architectures for quantum simulation showing a quantum speedup , 2017, 1703.00466.

[7]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[8]  Keisuke Fujii,et al.  On the hardness of classically simulating the one clean qubit model , 2013, Physical review letters.

[9]  Stephen D Bartlett,et al.  Symmetry-protected phases for measurement-based quantum computation. , 2012, Physical review letters.

[10]  H. J. Briegel,et al.  Adaptive quantum computation in changing environments using projective simulation , 2014, Scientific Reports.

[11]  Elham Kashefi,et al.  Information Theoretically Secure Hypothesis Test for Temporally Unstructured Quantum Computation (Extended Abstract) , 2017, 1704.01998.

[12]  Tzu-Chieh Wei,et al.  Affleck-Kennedy-Lieb-Tasaki state on a honeycomb lattice is a universal quantum computational resource. , 2011, Physical review letters.

[13]  Akimasa Miyake,et al.  Resource quality of a symmetry-protected topologically ordered phase for quantum computation. , 2014, Physical review letters.

[14]  Tomoyuki Morimae,et al.  Hardness of classically sampling one clean qubit model with constant total variation distance error , 2017, ArXiv.

[15]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Yoshifumi Nakata,et al.  Measurement-based quantum computation on symmetry breaking thermal States. , 2012, Physical review letters.

[17]  A. Miyake,et al.  Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian. , 2008, Physical review letters.

[18]  Spin lattices with two-body Hamiltonians for which the ground state encodes a cluster state , 2008, 0805.2980.

[19]  Wolfgang Dür,et al.  Weighted graph states and applications to spin chains, lattices and gases , 2007 .

[20]  Andrew S. Darmawan,et al.  Measurement-based quantum computation in a two-dimensional phase of matter , 2011, 1108.4741.

[21]  Akimasa Miyake,et al.  Quantum computation on the edge of a symmetry-protected topological order. , 2010, Physical review letters.

[22]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Tzu-Chieh Wei,et al.  The 2D AKLT state is a universal quantum computational resource , 2010 .

[24]  Stephen D Bartlett,et al.  Identifying phases of quantum many-body systems that are universal for quantum computation. , 2008, Physical review letters.

[25]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[26]  R. Feynman Quantum mechanical computers , 1986 .

[27]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[28]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[29]  Akimasa Miyake,et al.  Quantum supremacy in constant-time measurement-based computation: A unified architecture for sampling and verification , 2017, 1703.11002.

[30]  Masahito Hayashi,et al.  Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing. , 2015, Physical review letters.

[31]  Keisuke Fujii,et al.  Power of Quantum Computation with Few Clean Qubits , 2015, ICALP.

[32]  T. Morimae,et al.  Blind quantum computation protocol in which Alice only makes measurements , 2012, 1201.3966.

[33]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[34]  A. Miyake Quantum computational capability of a 2D valence bond solid phase , 2010, 1009.3491.

[35]  David P. DiVincenzo,et al.  Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..

[36]  D. Gross,et al.  Novel schemes for measurement-based quantum computation. , 2006, Physical review letters.

[37]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[38]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[39]  C. Macchiavello,et al.  Quantum hypergraph states , 2012, 1211.5554.

[40]  Yasuhiro Takahashi,et al.  Ancilla-driven instantaneous quantum polynomial time circuit for quantum supremacy , 2016, ArXiv.

[41]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[42]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[43]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[44]  Tomoyuki Morimae,et al.  Quantum proofs can be verified using only single qubit measurements , 2015, ArXiv.

[45]  Tzu-Chieh Wei,et al.  Thermal states as universal resources for quantum computation with always-on interactions. , 2011, Physical review letters.

[46]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[47]  J. Eisert,et al.  Reliable quantum certification of photonic state preparations , 2014, Nature Communications.

[48]  M. Hayashi,et al.  Verifiable fault tolerance in measurement-based quantum computation , 2016, 1610.05216.

[49]  E. Kashefi,et al.  Unconditionally verifiable blind quantum computation , 2012, 1203.5217.

[50]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  Akimasa Miyake,et al.  Hierarchy of universal entanglement in 2D measurement-based quantum computation , 2015, npj Quantum Information.

[52]  Daniel J. Brod,et al.  Complexity of simulating constant-depth BosonSampling , 2014, 1412.6788.

[53]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[54]  W Dür,et al.  Quantum computation in correlation space and extremal entanglement. , 2009, Physical review letters.

[55]  J. Eisert,et al.  Direct certification of a class of quantum simulations , 2016, 1602.00703.

[56]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[57]  T. Rudolph,et al.  Quantum computation via measurements on the low-temperature state of a many-body system , 2009, 0906.3553.

[58]  H. Briegel,et al.  Universal quantum computer from a quantum magnet , 2010, 1004.1907.