Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells.

Mesenchymal stem cells (MSCs) are used extensively in cartilage tissue engineering. We have developed a photopolymerizable poly(ethylene glycol diacrylate) (PEGDA) and poly(ethylene glycol) (PEG) semi-interpenetrating network that facilitates the in vitro chondrogenesis of human MSCs (hMSCs). Network parameters were altered and tested for their effects on subsequent matrix elaboration. The mesh size, calculated for each network based on equilibrium swelling ratios, was larger with lower PEGDA:PEG ratios and with higher PEGDA molecular weight. Changes in xi correlated with changes in extracellular matrix content and deposition in hMSC-seeded networks cultured in vitro for 6 weeks in defined chondrogenic medium. Networks constructed with PEGDA (6 kDa) and PEG (88 kDa) at 1:2 displayed intercellular deposition of proteoglycan. Furthermore, their proteoglycan contents were significantly higher than with PEGDA (6 kDa) hydrogels constructed without the PEG component and those constructed at a PEGDA:PEG ratio of 2:1, which both exhibited pericellular proteoglycan deposition. However, networks constructed with PEGDA (12 and 20 kDa) and PEG (88 kDa) exhibited intercellular deposition of proteoglycan regardless of the ratio employed. Collagen content was lower in networks constructed with PEGDA (12 and 20 kDa) and PEG (88 kDa) at a ratio of 1:2 than in those fabricated at the same PEGDA molecular weights at a ratio of 2:1. This study demonstrated that semi-interpenetrating network parameters influence not only extracellular matrix content, but also the deposition of the matrix molecules by hMSCs undergoing chondrogenesis. It is important that these parameters be considered carefully when creating scaffolds for tissue-engineered cartilage.

[1]  N. Peppas,et al.  Correlation between mesh size and equilibrium degree of swelling of polymeric networks. , 1989, Journal of biomedical materials research.

[2]  Jason A Burdick,et al.  Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. , 2002, Biomaterials.

[3]  Kristi S Anseth,et al.  Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. , 2004, Journal of biomedical materials research. Part A.

[4]  G. Vunjak‐Novakovic,et al.  Cultivation of cell‐polymer cartilage implants in bioreactors , 1993, Journal of cellular biochemistry.

[5]  S. Bryant,et al.  Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. , 2002, Journal of biomedical materials research.

[6]  J. Elisseeff,et al.  Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. , 2000, Journal of biomedical materials research.

[7]  V. Goldberg,et al.  The Chondrogenic Potential of Human Bone-Marrow-Derived Mesenchymal Progenitor Cells* , 1998, The Journal of bone and joint surgery. American volume.

[8]  F. Barry,et al.  Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system , 2002, In Vitro Cellular & Developmental Biology - Animal.

[9]  A I Caplan,et al.  In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. , 1998, Experimental cell research.

[10]  J. F. Woessner,et al.  The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. , 1961, Archives of biochemistry and biophysics.

[11]  J. Elisseeff,et al.  In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. , 1998, Annals of Plastic Surgery.

[12]  Antonios G Mikos,et al.  Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. , 2002, Journal of biomedical materials research.

[13]  K. Kuettner,et al.  Biochemistry of articular cartilage in health and disease. , 1992, Clinical biochemistry.

[14]  R Langer,et al.  Chondrogenesis in a cell-polymer-bioreactor system. , 1998, Experimental cell research.

[15]  Robert Langer,et al.  Controlled‐release of IGF‐I and TGF‐β1 in a photopolymerizing hydrogel for cartilage tissue engineering , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[16]  W McIntosh,et al.  Transdermal photopolymerization for minimally invasive implantation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Buttle,et al.  Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. , 1986, Biochimica et biophysica acta.

[18]  Stephanie J Bryant,et al.  Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production , 2004, Biotechnology and bioengineering.

[19]  J. A. Hubbell,et al.  Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. , 1994, Journal of biomedical materials research.

[20]  Joachim Aigner,et al.  Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. , 2002, Biomaterials.

[21]  J. Elisseeff,et al.  Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. , 1999, Plastic and reconstructive surgery.

[22]  R Langer,et al.  Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering , 1998, Biotechnology progress.

[23]  G A Ateshian,et al.  Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. , 2000, Journal of biomechanical engineering.

[24]  Alan Grodzinsky,et al.  Tissue-engineered composites for the repair of large osteochondral defects. , 2002, Arthritis and rheumatism.

[25]  Y. Duan,et al.  The swelling behavior and network parameters of guar gum/poly(acrylic acid) semi-interpenetrating polymer network hydrogels , 2006 .

[26]  Christopher G Williams,et al.  In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. , 2003, Tissue engineering.

[27]  P. Patwari,et al.  Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. , 2003, Journal of structural biology.

[28]  B. Obradovic,et al.  Integration of engineered cartilage , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[29]  S. Bryant,et al.  Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels , 2004, Annals of Biomedical Engineering.

[30]  P. Manson,et al.  In Vivo Chondrogenesis of Mesenchymal Stem Cells in a Photopolymerized Hydrogel , 2007, Plastic and reconstructive surgery.

[31]  Jennifer H Elisseeff,et al.  Synthesis and characterization of a novel degradable phosphate-containing hydrogel. , 2003, Biomaterials.

[32]  R Langer,et al.  In vitro generation of osteochondral composites. , 2000, Biomaterials.

[33]  Jennifer L West,et al.  Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. , 2002, Journal of biomedical materials research.

[34]  N. Peppas,et al.  POLY(VINYL ALCOHOL) HYDROGELS: REINFORCEMENT OF RADIATION-CROSSLINKED NETWORKS BY CRYSTALLIZATION. , 1976 .

[35]  A Ratcliffe,et al.  Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics , 2001, Journal of materials science. Materials in medicine.

[36]  G. Vunjak‐Novakovic,et al.  Bioreactor studies of native and tissue engineered cartilage. , 2002, Biorheology.

[37]  G. Vunjak‐Novakovic,et al.  Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. , 1999, Experimental cell research.

[38]  Wan-Ju Li,et al.  Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ϵ-caprolactone) scaffolds† , 2003 .

[39]  G. Vunjak‐Novakovic,et al.  Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF‐2 during 2D expansion and BMP‐2 during 3D cultivation , 2001, Journal of cellular biochemistry.

[40]  Changren Zhou,et al.  Development and potential of a biomimetic chitosan/type II collagen scaffold for cartilage tissue engineering. , 2005, Chinese medical journal.

[41]  J. Hubbell,et al.  Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. , 1998, Biomaterials.

[42]  E. Caterson,et al.  Polymer/Alginate Amalgam for Cartilage‐ Tissue Engineering , 2002, Annals of the New York Academy of Sciences.

[43]  J. Elisseeff,et al.  Biological Response of Chondrocytes to Hydrogels , 2002, Annals of the New York Academy of Sciences.

[44]  E. Merrill,et al.  Partitioning and diffusion of solutes in hydrogels of poly(ethylene oxide). , 1993, Biomaterials.

[45]  P. Flory,et al.  STATISTICAL MECHANICS OF CROSS-LINKED POLYMER NETWORKS II. SWELLING , 1943 .

[46]  J L West,et al.  Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. , 2001, Biomaterials.

[47]  E. Caterson,et al.  Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. , 2001, Journal of biomedical materials research.

[48]  J. MacLeod,et al.  Phenotypic Stability of Articular Chondrocytes In Vitro: The Effects of Culture Models, Bone Morphogenetic Protein 2, and Serum Supplementation , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[49]  S. Bryant,et al.  Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[50]  Stephanie J Bryant,et al.  Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. , 2003, Journal of biomedical materials research. Part A.

[51]  D. Howard,et al.  Tissue engineering strategies for cartilage generation--micromass and three dimensional cultures using human chondrocytes and a continuous cell line. , 2005, Biochemical and biophysical research communications.

[52]  Antonios G. Mikos,et al.  Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications , 2005 .

[53]  S J Bryant,et al.  The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. , 2001, Biomaterials.

[54]  G. Vunjak‐Novakovic,et al.  Culture of organized cell communities. , 1998, Advanced drug delivery reviews.

[55]  B. Obradovic,et al.  Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue‐engineered cartilage , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[56]  Stephanie J Bryant,et al.  Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. , 2003, Journal of biomedical materials research. Part A.

[57]  Jennifer L. West,et al.  Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells , 2001 .