Three easy ways for separating nonlinear mixtures?

In this paper, we consider the nonlinear Blind Source Separation BSS and independent component analysis (ICA) problems, and especially uniqueness issues, presenting some new results. A fundamental difficulty in the nonlinear BSS problem and even more so in the nonlinear ICA problem is that they are nonunique without a suitable regularization. In this paper, we mainly discuss three different ways for regularizing the solutions, that have been recently explored.

[1]  R. Liu,et al.  AMUSE: a new blind identification algorithm , 1990, IEEE International Symposium on Circuits and Systems.

[2]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: LNL cascade models , 1986, Biological Cybernetics.

[3]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[4]  Juha Karhunen,et al.  An Unsupervised Ensemble Learning Method for Nonlinear Dynamic State-Space Models , 2002, Neural Computation.

[5]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[6]  Massoud Babaiezadeh Malmiri On blind source separation in convolutive and nonlinear mixtures , 2002 .

[7]  Dinh Tuan Pham,et al.  Blind separation of instantaneous mixture of sources via the Gaussian mutual information criterion , 2000, 2000 10th European Signal Processing Conference.

[8]  Kiyotoshi Matsuoka,et al.  A neural net for blind separation of nonstationary signals , 1995, Neural Networks.

[9]  Aapo Hyvärinen,et al.  Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.

[10]  Radivoje Popovic,et al.  Hall effect devices , 1991 .

[11]  E. Oja,et al.  Independent Component Analysis , 2013 .

[12]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[13]  Anisse Taleb,et al.  A generic framework for blind source separation in structured nonlinear models , 2002, IEEE Trans. Signal Process..

[14]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[15]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[16]  Lyal B. Harris November , 1890, The Hospital.

[17]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[18]  Andreas Ziehe,et al.  Unmixing Hyperspectral Data , 1999, NIPS.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  P. Comon Independent Component Analysis , 1992 .

[21]  Dimitrios Hatzinakos,et al.  Blind identification of LTI-ZMNL-LTI nonlinear channel models , 1995, IEEE Trans. Signal Process..

[22]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[24]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[25]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[26]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[27]  Visa Koivunen,et al.  Blind identifiability of class of nonlinear instantaneous ICA models , 2002, 2002 11th European Signal Processing Conference.

[29]  Yannick Deville,et al.  Multi-tag radio-frequency identification systems based on new blind source separation neural networks , 2002, Neurocomputing.

[30]  S Makeig,et al.  Blind separation of auditory event-related brain responses into independent components. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Aapo Hyvärinen,et al.  Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces , 2000, Neural Computation.

[32]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[33]  Luís B. Almeida,et al.  MISEP -- Linear and Nonlinear ICA Based on Mutual Information , 2003, J. Mach. Learn. Res..

[34]  Christian Jutten,et al.  Source separation in post-nonlinear mixtures , 1999, IEEE Trans. Signal Process..

[35]  C. Jutten,et al.  On the separability of nonlinear mixtures of temporally correlated sources , 2003, IEEE Signal Processing Letters.

[36]  Andrzej Cichocki,et al.  Robust learning algorithm for blind separation of signals , 1994 .

[37]  E. Lukács A Characterization of the Gamma Distribution , 1955 .

[38]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[39]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[41]  Christian Jutten,et al.  Quasi-nonparametric blind inversion of Wiener systems , 2001, IEEE Trans. Signal Process..

[42]  T. Sejnowski,et al.  Separation of post-nonlinear mixtures using ACE and temporal decorrelation , 2001 .

[43]  Christian Jutten,et al.  Source separation based processing for integrated Hall sensor arrays , 2002 .

[44]  Calyampudi R. Rao,et al.  Extension of Darmois-Skitovic Theorem to Functions of Random Variables Satisfying an Addition Theorem , 1973 .

[45]  Kari Torkkola,et al.  Blind Separation For Audio Signals - Are We There Yet? , 1999 .

[46]  Andrzej Cichocki,et al.  Information-theoretic approach to blind separation of sources in non-linear mixture , 1998, Signal Process..

[47]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[48]  Christian Jutten,et al.  A geometric approach for separating post non-linear mixtures , 2002, 2002 11th European Signal Processing Conference.

[49]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[50]  Christian Jutten,et al.  BLIND SEPARATING CONVOLUTIVE POST NON-LINEAR MIXTURES , 2001 .

[51]  Fabian J. Theis,et al.  Maximum Entropy and Minimal Mutual Information in a Nonlinear Model , 2001 .