Hypothesis: somatic hypermutation by gene conversion via the error prone DNA----RNA----DNA information loop.

[1]  J. Coffin Genetic variation in AIDS viruses , 1986, Cell.

[2]  Mario R. Capecchi,et al.  High frequency targeting of genes to specific sites in the mammalian genome , 1986, Cell.

[3]  R. Flavell,et al.  Repetitive DNA and chromosome evolution in plants. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  R. Levy,et al.  Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B cell lymphoma , 1986, Cell.

[5]  M. Bosma,et al.  Truncated mu (mu') chains in murine IgM. Evidence that mu' chains lack variable regions , 1985, The Journal of experimental medicine.

[6]  H. Temin Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts. , 1985, Molecular biology and evolution.

[7]  R. Kucherlapati,et al.  Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination , 1985, Nature.

[8]  D. Roth,et al.  Relative rates of homologous and nonhomologous recombination in transfected DNA. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Baltimore Retroviruses and Retrotransposons: The role of reverse transcription in shaping the eukaryotic genome , 1985, Cell.

[10]  F. Alt,et al.  Developmentally controlled and tissue-specific expression of unrearranged VH gene segments , 1985, Cell.

[11]  J. Weill,et al.  A single rearrangement event generates most of the chicken immunoglobulin light chain diversity , 1985, Cell.

[12]  H. Temin,et al.  The retrovirus pol gene encodes a product required for DNA integration: identification of a retrovirus int locus. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Milstein,et al.  Somatic mutation and the maturation of immune response to 2-phenyl oxazolone , 1984, Nature.

[14]  E. Vanin,et al.  Processed pseudogenes: characteristics and evolution. , 1984, Annual review of genetics.

[15]  H. Temin,et al.  Recombination of transfected DNAs in vertebrate cells in culture. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Zack,et al.  Monoclonal antibodies reveal the structural basis of antibody diversity. , 1983, Science.

[17]  N. Gough Has terminal transferase finally made it as a mutator of antibody genes , 1983 .

[18]  B. Mach,et al.  Somatic mutations of immunoglobulin variable genes are restricted to the rearranged V gene. , 1983, Science.

[19]  D. Bogenhagen,et al.  Clusters of point mutations are found exclusively around rearranged antibody variable genes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Hood,et al.  Expression of complete transplantation antigens by mammalian cells transformed with truncated class I genes , 1983, Nature.

[21]  P. Gearhart Generation of immunoglobulin variable gene diversity. , 1982, Immunology today.

[22]  Katherine Spindler,et al.  Rapid evolution of RNA genomes. , 1982, Science.

[23]  H. Temin,et al.  Spontaneous variation and synthesis in the U3 region of the long terminal repeat of an avian retrovirus , 1982, Journal of virology.

[24]  T. Kunkel,et al.  Fidelity of mammalian DNA polymerases. , 1981, Science.

[25]  E. Selsing,et al.  Somatic mutation of immunoglobulin light-chain variable-region genes , 1981, Cell.

[26]  H. Zachau,et al.  Differences between germ-line and rearranged immunoglobulin Vκ coding sequences suggest a localized mutation mechanism , 1981, Nature.

[27]  Leroy Hood,et al.  IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts , 1981, Nature.

[28]  G. Vankin,et al.  Persistent Heresy@@@Somatic Selection and Adaptive Evolution: On the Inheritance of Acquired Characters. , 1981 .

[29]  Hitoshi Sakano,et al.  Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes , 1980, Nature.

[30]  S. Tonegawa,et al.  Sequences of mouse immunoglobulin light chain genes before and after somatic changes , 1978, Cell.

[31]  S. Mizutani,et al.  Incorporation of noncomplementary nucleotides at high frequencies by ribodeoxyvirus DNA polymerases and Escherichia coli DNA polymerase I. , 1976, Biochemistry.

[32]  L. Loeb,et al.  The infidelity of avian myeloblastosis virus deoxyribonucleic acid polymerase in polynucleotide replication. , 1974, The Journal of biological chemistry.

[33]  D. Osoba Effect of rifamycin-SV derivatives on immunologic responses in culture. , 1974, Journal of immunology.

[34]  C. Bell,et al.  Conversion of non-immune rabbit spleen cells by ribonucleic acid of lymphoid cells from an immunized rabbit to produce IgG antibody of foreign light chain allotype. , 1969, Journal of immunology.

[35]  S. Brenner,et al.  Origin of Antibody Variation , 1966, Nature.

[36]  D. Reanney,et al.  Genetic error and genome design. , 1987, Cold Spring Harbor symposia on quantitative biology.

[37]  C. Kocks,et al.  Mutation and Selection of Antibodies , 1986 .

[38]  D. Linzer Homologous recombination in human cells , 1985 .

[39]  M. Wabl,et al.  Hypermutation at the immunoglobulin heavy chain locus in a pre-B-cell line. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[40]  W. Doolittle RNA-mediated gene conversion? , 1985 .

[41]  J. Holland Continuum of Change in RNA Virus Genomes , 1984 .

[42]  F. Alt,et al.  Novel immunoglobulin heavy chains are produced from DJH gene segment rearrangements in lymphoid cells , 1984, Nature.

[43]  L. Hood,et al.  The generation of diversity in phosphorylcholine-binding antibodies. , 1984, Advances in immunology.

[44]  D. Reanney,et al.  Molecular biology: Genetic noise in evolution? , 1984, Nature.

[45]  A. Cunningham Evolution in microcosm: the rapid somatic diversification of lymphocytes. , 1976, Annales d'immunologie.