A global database for modeling tumor-immune cell communication

[1]  Yi Zhao,et al.  SODB facilitates comprehensive exploration of spatial omics data , 2023, Nature Methods.

[2]  J. Serviss,et al.  An unsupervised method for physical cell interaction profiling of complex tissues , 2021, Nature Methods.

[3]  T. Cheng,et al.  Single-Cell Analysis of the Pan-Cancer Immune Microenvironment and scTIME Portal , 2021, Cancer Immunology Research.

[4]  A. Regev,et al.  Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. , 2021, Cancer cell.

[5]  V. Soumelis,et al.  Dissection of intercellular communication using the transcriptome-based framework ICELLNET , 2021, Nature Communications.

[6]  Jian-Hua Yang,et al.  ColorCells: a database of expression, classification and functions of lncRNAs in single cells , 2020, Briefings Bioinform..

[7]  Xin Shao,et al.  CellTalkDB: a manually curated database of ligand-receptor interactions in humans and mice , 2020, Briefings Bioinform..

[8]  Hong Xu,et al.  Checkpoint therapeutic target database (CKTTD): the first comprehensive database for checkpoint targets and their modulators in cancer immunotherapy , 2020, Journal for ImmunoTherapy of Cancer.

[9]  Fan Zhang,et al.  TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment , 2020, bioRxiv.

[10]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[11]  Zemin Zhang,et al.  The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications , 2020, Cellular & Molecular Immunology.

[12]  Ron Edgar,et al.  NCBI gene expression and hybridization array data repository , 2020 .

[13]  Mirjana Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[14]  K. D. de Visser,et al.  Immune crosstalk in cancer progression and metastatic spread: a complex conversation , 2020, Nature Reviews Immunology.

[15]  Steffi Oesterreich,et al.  Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. , 2019, Immunity.

[16]  Jacques Colinge,et al.  SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics , 2019, bioRxiv.

[17]  Y. Saeys,et al.  NicheNet: modeling intercellular communication by linking ligands to target genes , 2019, Nature Methods.

[18]  Patrick M. Helbling,et al.  Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization , 2019, Nature Cell Biology.

[19]  Lincoln D Stein,et al.  The International Cancer Genome Consortium Data Portal , 2019, Nature Biotechnology.

[20]  J. Ajani,et al.  iTALK: an R Package to Characterize and Illustrate Intercellular Communication , 2019, bioRxiv.

[21]  P. Carmeliet,et al.  Phenotype molding of stromal cells in the lung tumor microenvironment , 2018, Nature Medicine.

[22]  Nuno A. Fonseca,et al.  Expression Atlas: gene and protein expression across multiple studies and organisms , 2017, Nucleic Acids Res..

[23]  Hyojin Kim,et al.  TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions , 2017, Nucleic Acids Res..

[24]  Wenming Zhao,et al.  Genome Sequence Archive , 2017 .

[25]  Zdenka Kuncic,et al.  ORTI: An Open-Access Repository of Transcriptional Interactions for Interrogating Mammalian Gene Expression Data , 2016, PloS one.

[26]  Pornpimol Charoentong,et al.  Computational genomics tools for dissecting tumour–immune cell interactions , 2016, Nature Reviews Genetics.

[27]  Piero Carninci,et al.  A draft network of ligand–receptor-mediated multicellular signalling in human , 2015, Nature Communications.

[28]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[29]  J. Latouche,et al.  CRTAM Receptor Engagement by Necl-2 on Tumor Cells Triggers Cell Death of Activated Vγ9Vδ2 T Cells , 2013, The Journal of Immunology.

[30]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[31]  M. Acencio,et al.  HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions , 2012, BMC Genomics.

[32]  A. Tzankov,et al.  CD27 signaling on chronic myelogenous leukemia stem cells activates Wnt target genes and promotes disease progression. , 2012, The Journal of clinical investigation.

[33]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[34]  T. Whiteside The tumor microenvironment and its role in promoting tumor growth , 2008, Oncogene.

[35]  Haidong Dong,et al.  Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion , 2002, Nature Medicine.

[36]  H. Rammensee,et al.  Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma. , 2002, Cancer research.

[37]  N. Mitsiades,et al.  Fas ligand expression in thyroid carcinomas: a potential mechanism of immune evasion. , 1999, The Journal of clinical endocrinology and metabolism.

[38]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[39]  G. Zhu,et al.  Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion , 2002, Nature Medicine.