Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviours during the breeding season

[1]  P. Kenis,et al.  Comparative Analyses , 2020, Institutional Responses to Drug Demand in Central Europe.

[2]  P. Suárez-López,et al.  Under a New Light: Regulation of Light-Dependent Pathways by Non-coding RNAs , 2018, Front. Plant Sci..

[3]  X. Deng,et al.  Arabidopsis noncoding RNA modulates seedling greening during deetiolation , 2018, Science China Life Sciences.

[4]  K. Prasanth,et al.  Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. , 2017, Trends in genetics : TIG.

[5]  S. Morishita,et al.  Centromere evolution and CpG methylation during vertebrate speciation , 2017, Nature Communications.

[6]  Rossana Henriques,et al.  The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. , 2017, The New phytologist.

[7]  Eiji Watanabe,et al.  Dynamic plasticity in phototransduction regulates seasonal changes in color perception , 2017, Nature Communications.

[8]  Jesse M. Engreitz,et al.  Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood , 2017, Nature.

[9]  Adrian T. Grzybowski,et al.  Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription , 2017, Nature Structural &Molecular Biology.

[10]  A. Kalueff,et al.  Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests. , 2017, Zebrafish.

[11]  E. Lander,et al.  Local regulation of gene expression by lncRNA promoters, transcription and splicing , 2016, Nature.

[12]  D. Gatfield,et al.  Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames , 2015, Genome research.

[13]  J. Yamashita,et al.  Glucocorticoid receptor exhibits sexually dimorphic expression in the medaka brain. , 2015, General and comparative endocrinology.

[14]  R. Sidman,et al.  PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3 , 2015, Proceedings of the National Academy of Sciences.

[15]  D. Bartel,et al.  Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. , 2015, Cell reports.

[16]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[17]  Guodong Yang,et al.  LncRNA: a link between RNA and cancer. , 2014, Biochimica et biophysica acta.

[18]  W. Terzaghi,et al.  Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light , 2014, Proceedings of the National Academy of Sciences.

[19]  M. Kinoshita,et al.  Targeted mutagenesis using CRISPR/Cas system in medaka , 2014, Biology Open.

[20]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[21]  D. Vallone,et al.  Regulation of per and cry Genes Reveals a Central Role for the D-Box Enhancer in Light-Dependent Gene Expression , 2012, PloS one.

[22]  J. Rinn,et al.  Modular regulatory principles of large non-coding RNAs , 2012, Nature.

[23]  Jihua Ding,et al.  A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice , 2012, Proceedings of the National Academy of Sciences.

[24]  Howard Y. Chang,et al.  Molecular mechanisms of long noncoding RNAs. , 2011, Molecular cell.

[25]  Sibum Sung,et al.  Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA , 2011, Science.

[26]  G. Rune,et al.  Cholesterol‐promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus , 2009, Hippocampus.

[27]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[28]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[29]  Fumiko Ohta,et al.  The medaka draft genome and insights into vertebrate genome evolution , 2007, Nature.

[30]  Frank W. Pfrieger,et al.  Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron , 2005, Molecular and Cellular Neuroscience.

[31]  I. Moore,et al.  Stress, reproduction, and adrenocortical modulation in amphibians and reptiles , 2003, Hormones and Behavior.

[32]  A. Seasholtz,et al.  Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals. , 2002, The Journal of endocrinology.

[33]  L. Romero Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. , 2002, General and comparative endocrinology.

[34]  O. Hermanson,et al.  Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2 , 2000, Nature Genetics.

[35]  Paul E. Sawchenko,et al.  Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress , 2000, Nature Genetics.

[36]  F. Holsboer,et al.  Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1 , 1998, Nature Genetics.

[37]  G. Koob,et al.  Corticotropin Releasing Factor Receptor 1–Deficient Mice Display Decreased Anxiety, Impaired Stress Response, and Aberrant Neuroendocrine Development , 1998, Neuron.

[38]  John C. Wingfield,et al.  ECOLOGICAL BASES OF HORMONE-BEHAVIOR INTERACTIONS : THE EMERGENCY LIFE HISTORY STAGE , 1998 .

[39]  R. Campenot,et al.  Role of Lipoproteins in the Delivery of Lipids to Axons during Axonal Regeneration* , 1997, The Journal of Biological Chemistry.

[40]  P. Sharp,et al.  Circadian Rhythmicity in Photoperiodically Induced Gonadotrophin Release and Gonadal Growth in the Quail , 1969, Nature.

[41]  N. Egami Effect of Artificial Photoperiodicity on Time of Oviposition in the Fish,Oryzias latipes , 1954 .

[42]  W. Rowan Relation of Light to Bird Migration and Developmental Changes , 1925, Nature.

[43]  Hiroki R Ueda,et al.  Mammalian circadian clock: the roles of transcriptional repression and delay. , 2013, Handbook of experimental pharmacology.

[44]  I. Hanyu,et al.  Temperature-photoperiod conditions necessary to begin the spawning season in wild type Medaka , 1989 .