Interaction event network modeling based on temporal point process

Interaction event networks, which consist of interaction events among a set of individuals, exist in many areas from social, biological to financial applications. The individuals on networks intera...

[1]  Hang Dong,et al.  Modeling and Change Detection for Count-Weighted Multilayer Networks , 2020, Technometrics.

[2]  Jaromír Antoch,et al.  Change Point Problem , 1993 .

[3]  Rebecca Willett,et al.  Tracking Dynamic Point Processes on Networks , 2014, IEEE Transactions on Information Theory.

[4]  Tsuyoshi Murata,et al.  A General View for Network Embedding as Matrix Factorization , 2019, WSDM.

[5]  Jian Pei,et al.  Asymmetric Transitivity Preserving Graph Embedding , 2016, KDD.

[6]  William H. Woodall,et al.  An overview and perspective on social network monitoring , 2016, ArXiv.

[7]  Yosihiko Ogata,et al.  Inference for earthquake models: A self-correcting model , 1984 .

[8]  Hang Li,et al.  Variation Autoencoder Based Network Representation Learning for Classification , 2017, ACL.

[9]  David J. Marchette,et al.  Scan Statistics on Enron Graphs , 2005, Comput. Math. Organ. Theory.

[10]  Cai Jun,et al.  Network Monitoring Based on Community Structure Change , 2009, 2009 International Symposium on Intelligent Ubiquitous Computing and Education.

[11]  George C. Runger,et al.  Monitoring Temporal Homogeneity in Attributed Network Streams , 2016 .

[12]  Yosihiko Ogata,et al.  On Lewis' simulation method for point processes , 1981, IEEE Trans. Inf. Theory.

[13]  Junjie Wu,et al.  Embedding Temporal Network via Neighborhood Formation , 2018, KDD.

[14]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[15]  Scott W. Linderman,et al.  Discovering Latent Network Structure in Point Process Data , 2014, ICML.

[16]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[17]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[18]  Patrick J. Wolfe,et al.  Point process modelling for directed interaction networks , 2010, ArXiv.

[19]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .

[20]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[21]  Adriel Cheng,et al.  Using Scan-Statistical Correlations for Network Change Analysis , 2013, PAKDD Workshops.

[22]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Embrechts,et al.  Multivariate Hawkes processes: an application to financial data , 2011, Journal of Applied Probability.

[24]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[25]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[26]  William H. Woodall,et al.  Modeling and detecting change in temporal networks via the degree corrected stochastic block model , 2019, Qual. Reliab. Eng. Int..

[27]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[28]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[29]  Rassoul Noorossana,et al.  An overview of dynamic anomaly detection in social networks via control charts , 2018, Qual. Reliab. Eng. Int..

[30]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[31]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Ross Sparks,et al.  Monitoring communication outbreaks among an unknown team of actors in dynamic networks , 2016, Journal of Quality Technology.

[33]  Vijay K. Devabhaktuni,et al.  The Block Point Process Model for Continuous-time Event-based Dynamic Networks , 2017, WWW.

[34]  Ryan A. Rossi,et al.  Continuous-Time Dynamic Network Embeddings , 2018, WWW.

[35]  Kun Huang,et al.  A unifying theorem for spectral embedding and clustering , 2003, AISTATS.

[36]  U. Brandes,et al.  Modeling frequency and type of interaction in event networks , 2013, Corvinus Journal of Sociology and Social Policy.

[37]  Ravi Kumar,et al.  Structure and evolution of online social networks , 2006, KDD '06.

[38]  Chengqi Zhang,et al.  Network Representation Learning: A Survey , 2017, IEEE Transactions on Big Data.

[39]  Jian Li,et al.  Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec , 2017, WSDM.

[40]  Curtis B. Storlie,et al.  Scan Statistics for the Online Detection of Locally Anomalous Subgraphs , 2013, Technometrics.

[41]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[42]  Graham Cormode,et al.  Node Classification in Social Networks , 2011, Social Network Data Analytics.

[43]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[44]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[45]  Mehrdad Farajtabar Point process modeling and optimization of social networks , 2018 .

[46]  Charu C. Aggarwal,et al.  Heterogeneous Network Embedding via Deep Architectures , 2015, KDD.

[47]  Andrew McGregor,et al.  Graph stream algorithms: a survey , 2014, SGMD.

[48]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[49]  Xiuzhen Zhang,et al.  Anomaly detection in online social networks , 2014, Soc. Networks.

[50]  Alexander G. Tartakovsky,et al.  Statistical methods for network surveillance , 2018 .

[51]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[52]  Shamim Nemati,et al.  Patient Flow Prediction via Discriminative Learning of Mutually-Correcting Processes , 2016, IEEE Transactions on Knowledge and Data Engineering.

[53]  Hongyuan Zha,et al.  On Machine Learning towards Predictive Sales Pipeline Analytics , 2015, AAAI.

[54]  Jason Eisner,et al.  The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process , 2016, NIPS.