Design of lattice‐based ElGamal encryption and signature schemes using SIS problem

[1]  Ravi Kumar,et al.  A sieve algorithm for the shortest lattice vector problem , 2001, STOC '01.

[2]  G. P. Biswas,et al.  Cryptanalysis of Wang et al.’s lattice-based key exchange protocol☆ , 2016 .

[3]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2009, JACM.

[4]  Erdem Alkim,et al.  TESLA: Tightly-Secure Efficient Signatures from Standard Lattices , 2015, IACR Cryptol. ePrint Arch..

[5]  Lei Hu,et al.  On a Class of Pseudorandom Sequences From Elliptic Curves Over Finite Fields , 2007, IEEE Transactions on Information Theory.

[6]  Stephen S. Yau,et al.  Dynamic Audit Services for Outsourced Storages in Clouds , 2013, IEEE Transactions on Services Computing.

[7]  Cynthia Dwork,et al.  The First and Fourth Public-Key Cryptosystems with Worst-Case/Average-Case Equivalence , 2007, Electron. Colloquium Comput. Complex..

[8]  Joseph H. Silverman,et al.  NSS: An NTRU Lattice-Based Signature Scheme , 2001, EUROCRYPT.

[9]  Chris Peikert,et al.  Bonsai Trees (or, Arboriculture in Lattice-Based Cryptography) , 2009, IACR Cryptol. ePrint Arch..

[10]  Brent Waters,et al.  Lossy Trapdoor Functions and Their Applications , 2011, SIAM J. Comput..

[11]  Craig Gentry,et al.  Trapdoors for hard lattices and new cryptographic constructions , 2008, IACR Cryptol. ePrint Arch..

[12]  David Cash,et al.  Bonsai Trees, or How to Delegate a Lattice Basis , 2010, Journal of Cryptology.

[13]  Dengguo Feng,et al.  On Quadratic Bent Functions in Polynomial Forms , 2007, IEEE Transactions on Information Theory.

[14]  Mustapha Djeddou,et al.  A provably secure RFID authentication protocol based on elliptic curve signature with message recovery suitable for m‐Health environments , 2017, Trans. Emerg. Telecommun. Technol..

[15]  Taher ElGamal,et al.  A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .

[16]  Daniele Micciancio,et al.  On the hardness of the shortest vector problem , 1998 .

[17]  Chris Peikert Some Recent Progress in Lattice-Based Cryptography , 2009, TCC.

[18]  Miklós Ajtai,et al.  Generating hard instances of lattice problems (extended abstract) , 1996, STOC '96.

[19]  G. P. Biswas,et al.  Secure Computation on Cloud Storage: A Homomorphic Approach , 2015, J. Cases Inf. Technol..

[20]  G. P. Biswas,et al.  On Securing Bi- and Tri-partite Session Key Agreement Protocol Using IBE Framework , 2017, Wirel. Pers. Commun..

[21]  Tim Güneysu,et al.  Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems , 2012, CHES.

[22]  Xiaodong Liu,et al.  Requirements model driven adaption and evolution of Internetware , 2014, Science China Information Sciences.

[23]  G. P. Biswas,et al.  A Secure Cloud Storage using ECC-Based Homomorphic Encryption , 2017, Int. J. Inf. Secur. Priv..

[24]  Oded Regev,et al.  New lattice based cryptographic constructions , 2003, STOC '03.

[25]  Sahadeo Padhye,et al.  Identity‐based multi‐proxy multi‐signature scheme provably secure in random oracle model , 2015, Trans. Emerg. Telecommun. Technol..

[26]  Léo Ducas,et al.  Lattice Signatures and Bimodal Gaussians , 2013, IACR Cryptol. ePrint Arch..

[27]  Juliane Krämer,et al.  Lattice-Based Signature Schemes and Their Sensitivity to Fault Attacks , 2016, 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).

[28]  Shi Bai,et al.  An Improved Compression Technique for Signatures Based on Learning with Errors , 2014, CT-RSA.

[29]  Xavier Boyen,et al.  Lattice Mixing and Vanishing Trapdoors A Framework for Fully Secure Short Signatures and more , 2010 .

[30]  Chris Peikert,et al.  Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller , 2012, IACR Cryptol. ePrint Arch..

[31]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Zuhua Shao,et al.  Certificate-based verifiably encrypted RSA signatures , 2015, Trans. Emerg. Telecommun. Technol..

[33]  Sedat Akleylek,et al.  An Efficient Lattice-Based Signature Scheme with Provably Secure Instantiation , 2016, AFRICACRYPT.

[34]  Phong Q. Nguyen,et al.  Sieve algorithms for the shortest vector problem are practical , 2008, J. Math. Cryptol..

[35]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[36]  Cynthia Dwork,et al.  A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.

[37]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[38]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[39]  Gail-Joon Ahn,et al.  Role-Based Cryptosystem: A New Cryptographic RBAC System Based on Role-Key Hierarchy , 2013, IEEE Transactions on Information Forensics and Security.

[40]  Chris Peikert,et al.  Public-key cryptosystems from the worst-case shortest vector problem: extended abstract , 2009, STOC '09.

[41]  Daniele Micciancio Generalized Compact Knapsacks, Cyclic Lattices, and Efficient One-Way Functions , 2007, computational complexity.

[42]  Dan Boneh,et al.  Efficient Lattice (H)IBE in the Standard Model , 2010, EUROCRYPT.