LFG without C-structures

We explore the use of two dependency parsers, Malt and MST, in a Lexical Functional Grammar parsing pipeline. We compare this to the traditional LFG parsing pipeline which uses constituency parsers. We train the dependency parsers not on classical LFG f-structures but rather on modified dependency-tree versions of these in which all words in the input sentence are represented and multiple heads are removed. For the purposes of comparison, we also modify the existing CFG-based LFG parsing pipeline so that these "LFG-inspired" dependency trees are produced. We find that the differences in parsing accuracy over the various parsing architectures is small.

[1]  Lluís Màrquez i Villodre,et al.  SVMTool: A general POS Tagger Generator Based on Support Vector Machines , 2004, LREC.

[2]  Christopher D. Manning,et al.  The Stanford Typed Dependencies Representation , 2008, CF+CDPE@COLING.

[3]  Dan Klein,et al.  Learning Accurate, Compact, and Interpretable Tree Annotation , 2006, ACL.

[4]  Joakim Nivre,et al.  Non-Projective Dependency Parsing in Expected Linear Time , 2009, ACL.

[5]  Yuji Matsumoto,et al.  Statistical Dependency Analysis with Support Vector Machines , 2003, IWPT.

[6]  J. Bresnan Lexical-Functional Syntax , 2000 .

[7]  Fernando Pereira,et al.  Discriminative learning and spanning tree algorithms for dependency parsing , 2006 .

[8]  Dilek Z. Hakkani-Tür,et al.  Building a Turkish Treebank , 2003 .

[9]  Josef van Genabith,et al.  Accurate and Robust LFG-Based Generation for Chinese , 2008, INLG.

[10]  Andy Way,et al.  Wide-Coverage Deep Statistical Parsing Using Automatic Dependency Structure Annotation , 2008, CL.

[11]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[12]  David Ellis,et al.  Multilevel Coarse-to-Fine PCFG Parsing , 2006, NAACL.

[13]  Joakim Nivre,et al.  Pseudo-Projective Dependency Parsing , 2005, ACL.

[14]  Jun'ichi Tsujii,et al.  Probabilistic CFG with Latent Annotations , 2005, ACL.

[15]  Gerold Schneider A Broad-Coverage, Representationally Minimalist LFG Parser: Chunks and F-Structures Are Enough , 2005 .

[16]  Jun'ichi Tsujii,et al.  Shift-Reduce Dependency DAG Parsing , 2008, COLING.

[17]  Jason Eisner,et al.  Three New Probabilistic Models for Dependency Parsing: An Exploration , 1996, COLING.

[18]  Dan Klein,et al.  Improved Inference for Unlexicalized Parsing , 2007, NAACL.

[19]  Josef van Genabith,et al.  Dependency Parsing Resources for French: Converting Acquired Lexical Functional Grammar F-Structure Annotations and Parsing F-Structures Directly , 2009, NODALIDA.

[20]  Brian Roark,et al.  Classifying Chart Cells for Quadratic Complexity Context-Free Inference , 2008, COLING.

[21]  Koby Crammer,et al.  Online Large-Margin Training of Dependency Parsers , 2005, ACL.

[22]  Lilja Øvrelid,et al.  Improving data-driven dependency parsing using large-scale LFG grammars , 2009, ACL/IJCNLP.

[23]  Andy Way,et al.  Long-Distance Dependency Resolution in Automatically Acquired Wide-Coverage PCFG-Based LFG Approximations , 2004, ACL.

[24]  Eugene Charniak,et al.  Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative Reranking , 2005, ACL.

[25]  Joakim Nivre,et al.  MaltParser: A Data-Driven Parser-Generator for Dependency Parsing , 2006, LREC.

[26]  Sebastian Riedel,et al.  The CoNLL 2007 Shared Task on Dependency Parsing , 2007, EMNLP.

[27]  Richard Johansson,et al.  Extended Constituent-to-Dependency Conversion for English , 2007, NODALIDA.

[28]  Stefan Riezler,et al.  Speed and Accuracy in Shallow and Deep Stochastic Parsing , 2004, NAACL.

[29]  Fernando Pereira,et al.  Online Learning of Approximate Dependency Parsing Algorithms , 2006, EACL.

[30]  Federico Sangati,et al.  An English dependency treebank à la Tesnière , 2009 .

[31]  Josef van Genabith,et al.  Better training for function labeling , 2007 .

[32]  Giuseppe Attardi,et al.  Tree Revision Learning for Dependency Parsing , 2007, NAACL.